
 

Chapter 11. 

Detection of Signals in Noise 

11.1. Receiver Noise 

Noise is the unwanted electromagnetic energy that interferes with the ability of the 
receiver to detect the wanted signal. It may enter the receiver through the antenna 
along with the desired signal or it may be generated within the receiver. 

As discussed earlier, noise is generated by the thermal motion of the conduction 
electrons in the ohmic portions of the receiver input stages. This is known as Thermal 
or Johnson Noise. 

Noise power PN is expressed in terms of the temperature To of a matched resistor at 
the input of the receiver 

βoN kTP =   Watt, 

where: k – Boltzmann’s Constant (1.38×10-23 J/K), 
   To – System Temperature (usually 290K), 
   β – Receiver Noise Bandwidth (Hz). 

The noise power in practical receivers is always greater than that which can be 
accounted for by thermal noise alone. 

The total noise at the output of the receiver, N, can be considered to be equal to the 
noise power output from an ideal receiver multiplied by a factor called the Noise 
Figure, NF 

NFkTFPN oNN .β==  Watt. 

11.2. Noise Probability Density Functions 

Consider a typical radar front-end that consists of an antenna followed by a wide band 
amplifier, a mixer that down converts the signal to an intermediate frequency (IF) 
where it is further amplified and filtered (bandwidth βIF ). This is followed by an 
envelope detector and further filtering (bandwidth βV = βIF/2). 

 



The noise entering the IF filter is assumed to be Gaussian (as it is thermal in nature) 
with a probability density function (PDF) given by 
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where p(v)dv - probability of finding the noise voltage v between v 
and v+dv, 
ψo - variance of the noise voltage. 

If Gaussian noise is passed through a narrow band filter (one whose bandwidth is 
small compared to the centre frequency), then the PDF of the envelope of the noise 
voltage output can be shown to be 

oo

RRRp
ψψ 2

exp)(
2−

= , 

where R is the amplitude of the envelope of the filter output. 

This has the form of the Rayleigh probability density function 

 

Figure 11.1: Amplitude Distributions of Noise 



11.3. Probability of False Alarm 

A false alarm occurs whenever this noise voltage exceeds a defined threshold voltage 
Vt. The probability of this occurring is determined by integrating the PDF as shown 
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The average time interval between crossings of the threshold is called the false alarm 
time Tfa  
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where  Tk – Time between crossings of the threshold Vt by the noise 
envelope (when the slope of the crossing is positive). 

The false alarm probability could also have been defined as the ratio of the time that 
the envelope is above the threshold to the total time as shown graphically in the figure 
below 
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where tk and Tk are defined in the figure, and the average duration of a 
noise pulse is the reciprocal of the bandwidth B. 

 

Figure 11.2: Receiver Output Voltage Illustrating False Alarms due to Noise 

For a bandwidth β = βIF, the false alarm time is just 
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The false alarm times of practical radars must be very large, so the probability of false 
alarm must be very small, typically Pfa < 10-6. 



11.4. Probability of Detection 

Consider that a sine wave with amplitude, A, is present along with the noise at the 
input to the IF filter. 

The frequency of the sine wave is equal to the centre frequency of the IF filter 

It is shown by Rice that the signal at the output of the envelope detector will have the 
following PDF (known as a Rician distribution) 
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Io(Z) modified Bessel function of order zero and argument Z. It can be shown that for 
large Z, an asymptotic expansion for Io(Z) is 
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The probability that the signal will be detected is the same as the probability that the 
envelope R will exceed the threshold Vt. 
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Unfortunately, this cannot be evaluated in a closed form and so numerical techniques 
or a series approximation must be used. However, this has already been done, and 
tables and a series of curves have been produced. 

In terms of the PDFs, the detection and false alarm process is shown graphically in the 
figure below. 

 

Figure 11.3: PDF’s of Noise and Signal plus Noise 



 

Figure 11.4: Detection Probability as a function of Signal to Noise Ratio with False Alarm 
Probability as a Parameter 

A typical radar system will operate with a detection probability of 0.9 and a 
probability of false alarm of 10-6. The required signal to noise ratio can be read 
directly off the graph as 13.2dB. 

Note that this is for a single pulse of a steady sinusoidal signal in Gaussian noise with 
no detection losses. 



% Pd and Pfa Determined Numerically by running a time domain simulation 
% Generate noise and signals for SNR=13dB 
a = (1:1000000); 
x = randn(size(a)); 
sigi = 6.31*sin(a/1000); 
y = randn(size(a)); 
sigq = 6.31*cos(a/1000); 
% Determine the envelope  
c = sqrt(x.^2+y.^2); 
csig = sqrt((x+sigi).*(x+sigi)+(y+sigq).*(y+sigq)); 
%Plot the distributions 
edges=(0:0.1:12); 
n=histc(c,edges); 
ns=hist(csig,edges); 
plot(edges,n,edges,ns); 
grid 
% Determine the probabilities for different thresholds 
vt=5; 
% Look for noise peaks above the threshold 
nfa = find(c>vt); 
pfa = length(nfa)/1000000 
% Look for S+N peaks above the threshold 
nd = find(csig>vt); 
pd = length(nd)/1000000 

11.5. Detector Loss Relative to an Ideal System 

An envelope detector is used by a radar system when the phase of the received pulse 
is unknown. This is called non-coherent detection, and it results in a slightly higher 
SNR requirement than the curves above show. 

 

Figure 11.5: Detection Loss as a function of Signal to Noise Ratio 

This loss factor Cx is approximately 
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where Cx(1) – Loss in SNR, 
SNR(1) – The pre detector single pulse SNR required to achieve 
a particular Pd and Pfa. 

The graph shows that for decent SNR, the detector loss is very small. In the case 
above where the Pd = 0.9 and the Pfa = 10-6 it is only about 0.4dB. This effect is 



known as small signal suppression as it becomes much more pronounced as the SNR 
decreases. 

A coherent detector has zero response to the quadrature noise component, whereas, 
this component is translated into phase modulation after envelope detection. However 
the phase modulation is very small for high SNR, and few advantages can be gained 
by coherent detection for SNR > 10dB (Cx = 1dB) over envelope detection. 

11.6. The Matched Filter 

This SNR can achieve its maximum value when the IF filter is matched to the signal. 

The peak signal to (average) noise power ratio of the output response of the matched 
filter is equal to twice the received signal energy E divided by the single-sided noise 
power per Hz, No 
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where Ŝ  – Peak instantaneous signal power seen during the matched 
filter response to a pulse (W), 
N – Average noise power (W), 
E – Received signal energy (J), 
No – Single sided noise power density (W/Hz). 

The received energy is the product of the received power as determined by the range 
equation and the pulse duration, τ 

τSE = . 

The noise power density is the received noise power, N, divided by the bandwidth, βIF 
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When the bandwidth of the signal at IF is small compared to the centre frequency then 
the peak power is approximately twice the average power in the received pulse. So the 
output SNR is 
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The matched filter should not be confused with the circuit theory concept of matching 
that maximises power transfer rather than SNR. 

In practise a matched filter implementation is often hard to achieve exactly, so 
compromises are made as shown in the following table: 

Table 11.1: Efficiency of Non-matched Filters 

Input Signal Filter Optimum B.τ Loss in SNR 
compared to 

Matched Filter (dB) 
Rectangular Pulse Rectangular 1.37 0.85 
Rectangular Pulse Gaussian 0.72 0.49 
Gaussian Pulse Rectangular 0.72 0.39 
Gaussian Pulse Gaussian 0.44 0 (matched) 
Rectangular Pulse Single tuned circuit 0.4 0.88 
Rectangular Pulse Two cascaded tuned 

circuits 
0.613 0.56 

Rectangular Pulse Five cascaded tuned 
circuits 

0.672 0.5 

11.7. Integration of Pulse Trains 

The relationships developed earlier between SNR, Pd and Pfa apply to a single pulse 
only. 

As a search-radar scans past a target, it will remain in the beam sufficiently long for 
more than one pulse to hit the target. The number can be calculated as follows 
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where nb – Hits per scan, 
   θb – Azimuth beamwidth (deg), 

sθ&  - Azimuth scan rate (deg/s), 
ωm – Azimuth scan rate (rpm). 

For a typical ground based radar with an azimuth beamwidth or 1.5°, a scan rate of 
5rpm and a pulse repetition frequency of 30Hz, the number of pulses returned from a 
single point target is 15. 

The process of summing all these hits is called integration, and it can be achieved in 
many ways some of which were discussed in Chapter 6. If integration is performed 
prior to the envelope detector, it is called pre-detection or coherent integration, while 
if integration occurs after the detector, it is called post-detection or non-coherent 
integration. 

Pre-detection integration requires that the phase of the signal be preserved if the full 
benefit of the summing process is to be achieved and because phase information is 
destroyed by the envelope detector, post-detection integration, though easier to 
achieve, is not as efficient. 



If n pulses were perfectly integrated by a coherent integration process, the integrated 
signal to noise power ratio would be exactly n times that of a single pulse for white 
noise. However, in the non-coherent case, though the integration process is as 
efficient, there are the detector losses discussed earlier that reduce the effective SNR 
at the output of the envelope detector. 

Integration improves the Pd by reducing the noise variance and thus narrows the 
Noise and Signal + Noise PDFs as shown in the figure below 

 

Figure 11.6: Effect of Integration on Signal and Noise PDF’s Before and after Integration 

For n pulses integrated, the single pulse SNR required to achieve a given Pd and Pfa 
will be reduced. However, this results in increased detector losses, and hence a 
reduced effective integration efficiency. 

The integration efficiency may be defined as 
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where: EI(n) – Integration efficiency, 
SNR(1) – Single pulse SNR required to produce a specific Pd if 
there is no integration, 
SNR(n) – Single pulse SNR required to produce a specific Pd if 
n pulses are integrated perfectly. 

The improvement in SNR if n pulses are integrated, post detection is thus nEI(n). This 
is the integration improvement factor, or the effective number of pulses integrated. 



 

Figure 11.7: Integration Improvement Factor as a function of Pulses Integrated 

The integration loss in dB is defined as follows 
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The integration improvement factor is not a sensitive function of either the Pd or the 
Pfa as can be seen by the clustering of the curves in the figure above. 

 

Figure 11.8: Integration Loss as a function of the Number of Pulses Integrated 



11.8. Detection of Fluctuating Signals 

The discussions above assumes that the received echo signal does not vary from pulse 
to pulse during the integration period. However, from the discussion of target cross 
section, it is obvious that the RCS of any moving target (with the exception of a 
sphere) will fluctuate with time as the target aspect as seen by the radar changes. 

To properly account for these fluctuations, both the probability density function and 
the correlation properties with time must be known for a particular target and 
trajectory. 

Ideally, these characteristics should be measured for a target, but this is often 
impractical. A more practical alternative is to postulate a reasonable model for the 
target fluctuations and to analyse the effects mathematically. 

Four fluctuation models proposed by Swerling are used: 
• Swerling 1:Echo pulses received from the target on any one scan are of 

constant amplitude throughout the scan, but uncorrelated from scan to scan. 
The PDF is given by 

avav

p
σ
σ

σ
σ −

= exp1)( , 

where σav is the average cross section over all target fluctuations. 

• Swerling 2: The PDF is as for case 1, but the fluctuations are taken to be 
independent from pulse to pulse. 

• Swerling 3: The fluctuations are independent from scan to scan, but the PDF 
is given by 
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• Swerling: The PDF is as for case 3, but the fluctuations are independent from 
pulse to pulse. 

• Swerling 5: Non fluctuating 

 

Figure 11.9: Radar Returns for Different Swerling Fluctuations 



The PDF for cases 1 and 2 is indicative of a target with many (>5) scatterers of equal 
amplitude. These are typical for complicated targets like aircraft. 

The PDF for cases 3 and 4 is indicative of a target with one large scatterer and many 
small scatterers. 

As one would expect, the single pulse SNR required to achieve a particular Pd (for Pd 
> 0.4) will be higher for a fluctuating target than for a non-fluctuating target 

For Pd < 0.4, the system takes advantage of the fact that a fluctuating target will 
occasionally present echo signals larger than the average, and so the required SNR is 
lower 

 
Figure 11.10: Effect of Target Fluctuation on Required Signal to Noise Ratio 

To cater for fluctuating targets and integration, a further set of curves describing the 
integration improvement factor have been developed. 

 
Figure 11.11: Integration Improvement Factor as a function of the Number of Pulses Integrated 
for Fluctuating Targets 



If these curves are examined in isolation, it would appear that the integration 
efficiency EI(n) > 1 under certain conditions. One is not getting something for nothing 
as the single pulse SNR is much higher in these cases than it would be for the single 
pulse case. 
 
The procedure for using the range equation when one of these Swerling targets is 
specified is as follows: 

1. Find the SNR for the single pulse, non-fluctuating case that corresponds to the 
Pd and Pfa required using the curves in Figure 11.4 

2. For the specific Swerling target, find the additional SNR needed for the 
required Pd. using the curves in Figure 11.10 

3. If n pulses are to be integrated, the integration improvement factor II(n)=nEI(n) 
is then found using the curves in Figure 11.11 

4. The SNR(n) and nEI(n) are substituted into the range equation along with σav 
and the detection range found. 

11.9. Constant False Alarm Rate (CFAR) Processors 

The false alarm rate is very sensitive to the setting of the detection threshold voltage. 

Changes in radar characteristics with time (ageing) and changes in the target 
background characteristics mean that a fixed detection threshold is not practical and 
so adaptive techniques are required to maintain a constant false alarm rate irrespective 
of the circumstances. These are called Constant False Alarm Rate (CFAR) processors. 

The implementation of CFAR is not difficult, but in general the actual performance 
will be a function of the target, clutter and noise statistics. 

For aircraft these are not a problem as the area around the craft is generally empty so 
good background statistics can be obtained. However for ground targets, the CFAR 
threshold is determined from the clutter statistics, which may not be homogeneous. 
This is made worse by the fact that targets (tanks etc) often hide at the edges of clutter 
boundaries to reduce the probability of detection. 

 

Figure 11.12: Multiple Cell Averaging CFAR 

Needless to say, target detection using the CFAR process introduces additional losses 
as the statistics are incompletely characterised. For example a cell averaging process 
will exhibit a 3.5dB loss (compared to an ideal single pulse detector) if 10 cells are 



used in broadband noise or clutter with a Rayleigh PDF. This decreases to 1.5dB for 
20 cells and 0.7dB for 40 cells. The loss decreases with increasing numbers of pulses 
integrated. For a 10 cell CFAR, with 10 pulses integrated the loss is only 0.7dB and it 
reduced to only 0.3dB for 100 pulses integrated. 

CFAR can operate across range cells, cross-range cells or both, as shown in the figure 
below. 

 

Figure 11.13: Constant False Alarm Rate Options 



11.10. Air Traffic Control Radar Performance 

 

 

Type:    2D air surveillance radar 
Band:   L 
Frequency:  1250 to 1350MHz 
Peak Power:  5MW 
Antenna size:  12.8×6.7m 
Antenna Gain:  36dB (lower beam) 
   34.5dB (upper beam) 
Beam shape:  Cosec2 
Elev beamwidth: 4° Cosec2 to 40° 
Azim beamwidth: 1.25° 
Scan:   Mechanical 
Scan Rate:  6rpm 
PRF:   360pps 
PRF Stagger:  Quadruple 
Pulse width:  2µs 
Noise Figure:  4dB 

 
Calculate the theoretical detection range for a 1m2 aircraft target if the detection 
probability Pd = 0.9, and the mean time between false alarms is 9 hours. 

Matched Filter Assumptions: Rectangular Pulse 
     Second order bandpass filter 
     Loss 0.56dB 
     B.τ = 0.613 



Hits per Scan: Use the formula    5.12
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False Alarm Probability: Use the formula    
βfa
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From the matched filter assumptions B.τ = 0.613 and the pulsewidth τ = 2µs, the IF 
bandwidth β = 306kHz. 

Tfa = 9 hrs = 32400s 
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Single Pulse SNR:  Use the curves in Figure 11.4 for Pd = 0.9 and Pfa = 10-10 

SNR(1) = 15.2dB 

Fluctuating Target: Use the curves in Figure 11.10 for Swerling 2 for an aircraft 

Additional SNR required 8dB 

Pulse Integration: Use the curves in Figure 11.11 for 10 pulses integrated, a 
Swerling 2 target and Pd = 90% to obtain an improvement factor of 15dB 

Total n Pulse SNR Required: Add up the requirements 

SNR(10) = 15.2+8-15 = 8.2dB 

Applying the Radar Range Equation 

We assume the following losses: 
Transmitter Line = Ltx = 2dB (incorporated into Tx power) 
Receiver Line = Lrec = 2dB (incorporated into receiver noise figure) 

Losses: 

1D Scanning Loss = 1.6dB 
Matched Filter = 0.56dB 
CFAR Loss = 0.7dB 
Misc. Loss = 1.3dB 
Total L = 1.6+0.56+0.7+1.3 = 4.16dB 
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Transmitter Power: 10log10(5×106) = 67dBW 

Less Ltx = 2dB 
Radiated peak power Pt = 65dBW 

Antenna gain: (Lower beam) 36dB 

Radar cross section: σ = 10log10(1) = 0dBm2 

Constant: 
( )3

2

10 4
log10

π
λ  = -45.7dB 

Received Power: Calculated from the range equation 

Pr = 65+36+36-45.7+0-4.16-40log10R 

    = 87.14-40log10R dBW 

Receiver Noise: Use the equation NsysNN BFkTFPN ==  

K = Boltzmann’s Constant 1.38x10-23 J/deg 

Tsys = Temperature 290K 

B = 306×103 Hz 

We are given the receiver noise figure in dB  

10log10(Fn) = 4dB 

( ) dBWLFBkTN recnsys 14324149)(log10log10 1010 −=++−=++=  

Received Signal to Noise Ratio 

RRNPSNR rrec 1010 log401.2300.143log4014.87 −=+−=−=  

This must equal the required single pulse SNR if 10 pulses are integrated 
SNR(10) to achieve the specified Pd and Pfa. 

8.2 = 230.1 - 40log10R 

Solving for the Detection Range 

Solve for R 

R = 352.8km 

 

 



Atmospheric Attenuation 

The atmospheric attenuation αdB at L-and is about 0.003dB/km (one way) 

So the total two way attenuation over 353km is 2.1dB which will result in a 
significant reduction of the detection range. 

These equations are best solved graphically using MATLAB. 

The graph below shows two received power curves, one that does not take into 
account the atmospheric attenuation which intersects the SNR(10) curve at 353km. 

The other graph which takes attenuation into account intersects the SNR(10) curve at 
320km. 

 

Figure 11.14: Graphical Solution to the Radar Range Equation Including the Atmospheric Loss 

11.10.1. Analysis Software 

Radar performance analysis software based on Blake has been available for many 
years. In this case a package called RGCALC is used. 

For the 2D radar it provides the following results. 



 

Note that the predicted performance using RGCALC for a Swerling 2 target is only 
285km, this lower range is because it makes the assumption that the optimum 
matched filter has B.τ = 1, and hence calculates a wider IF bandwidth by a factor of 
1/0.613 than was made above. 

This adds 2.1dB to the noise floor which accounts for the difference 
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