Chapter 9

Covariance and Correlation

This chapter introduces the important concept of covariance. Because this concept
arises naturally in the propagation of errors, Section 9.1 starts with a quick review
of error propagation. This review sets the stage for Section 9.2, which defines covar-
iance and discusses its role in the propagation of errors. Then, Section 9.3 uses the
covariance to define the coefficient of linear correlation for a set of measured points
(X2 Y1)+ - - » (Xn» yy)- This coefficient, denoted r, provides a measure of how well
the points fit a straight line of the form y = A + Bx; its use is described in Sections
9.4 and 9.5.

9.1 Review of Error Propagation

This and the next section provide a final look at the important question of error
propagation. We first discussed error propagation in Chapter 3, where we reached
several conclusions. We imagined measuring two quantities x and y to calculate
some function g(x, y), such as ¢ = x +y or ¢ = x*sin y. [In fact, we discussed a
function g(x, . . . , z) of an arbitrary number of variables x, . . ., z; for simplicity, we
will now consider just two variables.] A simple argument suggested that the uncer-
tainty in our answer for g is just

dgq

dy

dq
ox

oq = oy. (9.1)

| o +

We first derived this approximation for the simple special cases of sums, differences,
products, and quotients. For instance, if ¢ is the sum ¢ = x + y, then (9.1) reduces to
the familiar 8¢ = &x + 8y. The general result (9.1) was derived in Equation (3.43).

We next recognized that (9.1) is often probably an overstatement of dq, because
there may be partial cancellation of the errors in x and y. We stated, without proof,
that when the errors in x and y are independent and random, a better value for the
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uncertainty in the calculated value of g(x, y) is the quadratic sum

We also stated, without proof, that whether or not the errors are independent and
random, the simpler formula (9.1) always gives an upper bound on 8¢; that is, the
uncertainty 8¢q is never any worse than is given by (9.1).

Chapter 5 gave a proper definition and proof of (9.2). First, we saw that a good
measure of the uncertainty dx in a measurement is given by the standard deviation
o,; in particular, we saw that if the measurements of x are normally distributed, we
can be 68% confident that the measured value lies within o, of the true value.
Second, we saw that if the measurements of x and y are governed by independent
normal distributions, with standard deviations o, and o,, the values of g(x, y) are
also normally distributed, with standard deviation '

g \2 . (dq )2
g, = (r_q o’,) * (r_{z (r‘_,) : (9.3)
? ax " ay -

This result provides the justification for the claim (9.2).

In Section 9.2, T will derive a precise formula for the uncertainty in g that
applies whether or not the errors in x and y are independent and normally distrib-
uted. In particular, I will prove that (9.1) always provides an upper bound on the
uncertainty in g.

Before I derive these results, let us first review the definition of the standard
deviation. The standard deviation o, of N measurements x,, ..., x, was originally
defined by the equation

, _ 1<
gl = => (x, — X (9.4)
I Nf— 1
If the measurements of x are normally distributed, then in the limit that N is large,
the definition (9.4) is equivalent to defining o, as the width parameter that appears
in the Gauss function

o\2n

(f_ (x—X )3,-’2rr..—’

that governs the measurements of x. Because we will now consider the possibility
that the errors in x may not be normally distributed, this second definition is no
longer available to us. We can, and will, still define o, by (9.4), however. Whether
or not the distribution of errors is normal, this definition of o, gives a reasonable
measure of the random uncertainties in our measurement of x. (As in Chapter 5, |
will suppose all systematic errors have been identified and reduced to a negligible
level, so that all remaining errors are random.)

The usual ambiguity remains as to whether to use the definition (9.4) of o, or
the “improved” definition with the factor N in the denominator replaced by (N — 1).
Fortunately, the discussion that follows applies to either definition, as long as we
are consistent in our use of one or the other. For convenience, I will use the defini-
tion (9.4), with N in the denominator throughout this chapter.
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Section 9.2 Covariance in Error Propagation

9.2 Covariance in Error Propagation

Suppose that to find a value for the function g(x, y), we measure the two quantities

vand y several times, obtaining N pairs of data, (x,, y,), . , (xy, Yn). From the N

measurements x,, . . ., Xy, we can compute the mean ¥ and standdrd deviation o, in
the usual way; smnlarly, from y,, ..., yy, we can compute y and o,. Next, using
the N pairs of measurements, we can compute N values of the quantlty of interest

= q(x,y) (@ =1,...,N).
Given q, . .., gy, we can now calculate their mean q, which we assume gives our
best estimate for g, and their standard deviation 0, which is our measure of the

random uncertainty in the values g,.
[ will assume, as usual, that all our uncertainties are small and hence that all

the numbers xy, . . ., xy are close to X and that all the y,, .. ., yu are close to y. We
can then make the approximation

q4; = q(x;y,)

o 00~ ) ©.5)

In this expression, the partial derivatives dg/ox dnd dg/dy are taken at the point
X=X,y =}, and are therefore the same for all i = 1, ..., N. With this approxima-
tion, the mean becomes

g = -Zq,

:“I

- _Z [q(x y) + (x —%) —(y, ~y)]

I-|

0
~ g&5y) + 2, —3) +
ox

This equation gives g as the sum of three terms. The first term is just g(x, y), and
the other two are exactly zero. [For example, it follows from the definition of ¥ that
X(x; = X) = 0.] Thus, we have the remarkably simple result

q = q(x, y); (9.6)
that is, to find the mean § we have only to calculate the function q(x, y) at the point
x=Xandy=y.

The standard deviation in the N values q,, . .., gy is given by

> 1 -
q = EZ(Q: - q)~.

Substituting (9.5) and (9.6), we find that
0 o dq 2
o) = 2[—“’(, %)+ L0~ )]

(ﬂ) 20— B + (31 S0s - 9

ox dy

4

Il

rlq rlq | " -
2 212 S~ B0 - ) ©.7

211



212

Chapter 9: Covariance and Correlation

The sums in the first two terms are those that appear in the definition of the standard
deviations o, and o,. The final sum is one we have not encountered before. It is
called the covariance' of x and y and is denoted

(9.9)

This equation gives the standard deviation o, whether or not the measurements of
x and y are independent or normally distributed.

If the measurements of x and y are independent, we can easily see that, after
many measurements, the covariance o, should approach zero: Whatever the value
of y,, the quantity x, — X is just as likely to be negative as it is to be positive. Thus,
after many measurements, the positive and negative terms in (9.8) should nearly
balance; in the limit of infinitely many measurements, the factor 1/N in (9.8) guaran-
tees that o, is zero. (After a finite number of measurements, o, will not be exactly
zero, but it should be small if the errors in x and y really are independent and
random.) With o, zero, Equation (9.9) for o, reduces to

, (94 5 . (94,
o2 = (ﬁ) o2 + (ﬁ) o2, (9.10)
dx ady -

the familiar result for independent and random uncertainties.

If the measurements of x and y are not independent, the covariance o, need
not be zero. For instance, it is easy to imagine a situation in which an overestimate
of x will always be accompanied by an overestimate of y, and vice versa. The
numbers (x; — X) and (y; — ¥) will then always have the same sign (both positive
or both negative), and their product will always be positive. Because all terms in
the sum (9.8) are positive, o, will be positive (and nonzero), even in the limit that
we make infinitely many measurements. Conversely, you can imagine situations in
which an overestimate of x is always accompanied by an underestimate of y, and
vice versa; in this case (x; — X) and (y; — ¥) will always have opposite signs, and
a,, will be negative. This case is illustrated in the example below.

 When the covariance o,, is not zero (even in the limit of infinitely many mea-
surements), we say that the errors in x and y are correlated. In this case, the uncer-
tainty o, in g(x, y) as given by (9.9) is not the same as we would get from the

i
formula (9.10) for independent, random errors.

""I'he name covariance for o, (for two variables x, y) parallels the name variance for e,> (for one variable
x). To emphasize this parallel, the covariance (9.8) is sometimes denoted o, , not an especially apt notation,
because the covariance can be negative. A convenient feature of the definition (9.8) is that e, has the dimen-
sions of xy. just as o, has the dimensions of x. '
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Section 9.2 Covariance in Error Propagation

Example: Two Angles with a Negative Covariance

Each of five students measures the same two angles @ and 8 and obtains the results
shown in the first three columns of Table 9.1.

Table 9.1. Five measurements of two angles « and B
(in degrees).

Student o B (@ — @) (B — B) (a —@)B — B

A 33 50 2 =2 —4
B 31 55 =2 3 —6
& 33 51 0 —1 0
D 32 53 —] I =
E 34 51 1 —1 =1

Find the average and standard deviation for each of the two angles, and then find
the covariance o, as defined by (9.8). The students now calculate the sum
g = a + B. Find their best estimate for g as given by (9.6) and the standard
deviation o, as given by (9.9). Compare the standard deviation with what you would
get if you assumed (incorrectly) that the errors in a and 8 were independent and
that o, was given by (9.10).

The averages are immediately seen to be @ = 33 and B = 52. With these
values, we can find the deviations (o — @) and (8 — B), as shown in Table 9.1, and
from these deviations we easily find

g, = 20 and 0'33 = 3.2.

[Here I have used the definition (9.4), with the N in the denominator.|

You can see from Table 9.1 that high values of « seem to be correlated with
low values of 8 and vice versa, because (o — @) and (B — B) always have opposite
signs. (For an experiment in which this kind of correlation arises, see Problem 9.6.)
This correlation means that the products (e« — @)(8 — B) shown in the last column
of the table are all negative (or zero). Thus, the covariance 0,4 as defined by (9.8)
is negative,

X (—12) = —24.

| =

1 _ =
(T(I',B . N 2(&' - (I)(B - B) =
The best estimate for the sum g = a + B is given by (9.6) as
Goes = § = @+ B = 33+ 52 = 85.

To find the standard deviation using (9.9), we need the two partial derivatives, which
are easily seen to be dg/da = dq/dp = 1. Therefore, according to (9.9),

o, = \/U"“E + U'ﬁ2 + 20,4

= 420+32-2x%x24 = 0.6.
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214 Chapter 9: Covariance and Correlation

If we overlooked the correlation between the measurements of « and B and treated
them as independent, then according to (9.10) we would get the incorrect answer

= 2.0 + 3.2 = 23.

We see from this example that a correlation of the right sign can cause a dramatic
difference in a propagated error. In this case we can see why there is this difference:
The errors in each of the angles a and B are a degree or so, suggesting that
g = a + B would be uncertain by a couple of degrees. But, as we have noted, the
positive errors in a are accompanied by negative errors in B, and vice versa. Thus,
when we add a and B, the errors tend to cancel, leaving an uncertainty of only a
fraction of a degree.

Quick Check 9.1. Each of three students measures the two sides, x and v, of a
rectangle and obtains the results shown in Table 9.2. Find the means X and ¥,

Table 9.2. Three measurements
of x and y (in mm); for Quick

Check 9.1.

Student X y
A 25 33
B 27 34
C 29 38

and then make a table like Table 9.1 to find the covariance o,. If the students
calculate the sum ¢ = x + y, find the standard deviation o, using the correct
formula (9.9), and compare it with the value you would get if you ignored the
covariance and used (9.10). (Notice that in this example, high values of x seem
to correlate with high values of y and vice versa. Specifically, student C appears
consistently to overestimate and student A to underestimate. Remember also
that with just three measurements, the results of any statistical calculation are

only a rough guide to the uncertainties concerned.)

Using the formula (9.9), we can derive an upper limit on o, that is always
valid. It is a simple algebraic exercise (Problem 9.7) to prove that the covariance
o,, satisfies the so-called Schwarz inequality

’(T_\.I‘,| < 0,0, (9.11)
If we substitute (9.11) into the expression (9.9) for the uncertainty o, We find that

g \2 g\2
gF = (—‘I) o’ + (r—!) ol + 2
d ox ' dy :

dq dq
dx dy




Section 9.3 Coefficient of Linear Correlation

2
U’_l] ;

) )
= ”‘_‘j o, + ﬁ
ox | - dy

that is,

e lg &t lg;, & (9.12)

With this result, we have finally established the precise significance of our origi-
nal, simple expression

oq = oq

& + ]i?'ay 9.13)
dy
for the uncertainty 8g. If we adopt the standard deviation a, as our measure of the
uncertainty in g, then (9.12) shows that the old expression (9.13) is really the upper
limit on the uncertainty. Whether or not the errors in X and y are independent and
normally distributed, the uncertainty in ¢ will never exceed the right side of (9.13).
If the measurements of x and y are correlated in just such a way that |o | = 0,0,
its largest possible value according to (9.11), then the uncertainty in ¢ can actually
be as large as given by (9.13), but it can never be any larger.

In an introductory physics laboratory, students usually do not make measure-
ments for which the covariance o, can be estimated reliably. Thus, you will proba-
bly not have occasion to use the result (9.9) explicitly. If, however, you suspect that
two variables x and y may be correlated, you should probably consider using the
bound (9.12) instead of the quadratic sum (9.10). Our next topic is an application

of covariance that you will almost certainly be able to use.

ox

9.3 Coefficient of Linear Correlation

The notion of covariance 0,y introduced in Section 9.2 enables us to answer the

question raised in Chapter 8 of how well a set of measurements (x, y,), ...,

(Xys ¥y) of two variables supports the hypothesis that x and y are linearly related.
Let us suppose we have measured N pairs of values (x,, y,), ..., (xn> yy) of

two variables that we suspect should satisfy a linear relation of the form

y = A + Bx.

Note that xy, ..., xy are no longer measurements of one single number, as they
were in the past two sections; rather, they are measurements of N different values
of some variable (for cxample, N different heights from which we have dropped a
stone). The same applies to Yaswins Vg

Using the method of least squares, we can find the values of A and B for the
line that best fits the points x5 Y1)y o ooy (ns Yo, If we already have a reliable
estimate of the uncertainties in the measurements, we can see whether the measured
points do lie reasonably close to the line (compared with the known uncertainties).
If they do, the measurements support our suspicion that x and y are linearly related.
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Figure 9.1. A “scatter plot” showing students’ scores on exams and homework. Each of the 10
points (x;, y;) shows a student’s homework score, x;, and exam score, ;.

Unfortunately, in many experiments, getting a reliable estimate of the uncertain-
ties in advance is hard, and we must use the data themselves to decide whether the
two variables appear to be linearly related. In particular, there is a type of experi-
ment for which knowing the size of uncertainties in advance is impossible. This
type of experiment, which is more common in the social than the physical sciences,
is best explained by an example.

Suppose a professor, anxious to convince his students that doing homework will
help them do well in exams, keeps records of their scores on homework and exams
and plots the scores on a “scatter plot” as in Figure 9.1. In this figure, homework
scores are plotted horizontally and exam scores vertically. Each point (x;, y;) shows
one student’s homework score, x;, and exam score, ¥;- The professor hopes to show
that high exam scores tend to be correlated with high homework scores, and vice
versa (and his scatter plot certainly suggests this is approximately so). This kind of
experiment has no uncertainties in the points; cach student’s two scores are known
exactly. The uncertainty lies rather in the extent to which the scores are correlated;
and this has to be decided from the data.

The two variables x and y (in either a typical physics experiment or one like
that just described) may, of course, be related by a more complicated relation than
the simple linear one, y = A + Bx. For example, plenty of physical laws lead to
quadratic relations of the form y = A + Bx + Cx2 Nevertheless, I restrict my dis-
cussion here to the simpler problem of deciding whether a given set of points sup-
ports the hypothesis of a linear relation y = A + Bx.

The extent to which a set of points (x;, y,),..., (xy> yy) supports a linear
relation between x and y is measured by the linear correlation coefficient, or just
correlation coefficient,

(9.14)
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Section 9.3 Coefficient of Linear Correlation

where the covariance o, and standard deviations o, and o, are defined exactly as
before, in Equations (9.8) and (9.4).2 Substituting these definitions into (9.14), we
can rewrite the correlation coefficient as

G 3, i f)(ye- it |

(9.15)

As 1 will show directly, the number r is an indicator of how well the points (x,, v,)
fit a straight line. It is a number between —1 and 1. If r is close to + 1. the points
lie close to some straight line; if 7 is close to 0, the points are uncorrelated and have
little or no tendency to lie on a straight line.

To prove these assertions, we first observe that the Schwarz inequality (9.11),
7| < 0,0y, implies immediately that |r| < 1 or

-1 = r = 1

as claimed. Next, let us suppose that the points (x;, y;) all lie exactly on the line
y=A + Bx. In this case y; = A + Bx; for all i, and hence y =A + BXx. Subtracting
these two equations, we see that

_v:' = j; = B(x.r s ‘?)
for each i. Inserting this result into (9.15), we find that

BX(x; — X =B _ i3 (9.16)

VI - BB I -% B
That is, if the points (x, y,), ..., (xy, yy) lie perfectly on a line, then r = + 1, and
its sign is determined by the slope of the line ( = 1 for B positive, and r = —1 for
B negative).” Even when the variables x and y really are linearly related, we do not
expect our experimental points to lie exactly on a line. Thus, we do not expect r to
be exactly +1. On the other hand, we do expect a value of r that is close to + 1.
if we believe that x and y are linearly related.

Suppose, on the other hand, there is no relationship between the variables x and
. Whatever the value of y, each x; would then be just as likely to be above ¥ as
below X. Thus, the terms in the sum

X0 =Xy —y)

in the numerator of r in (9.15) are just as likely to be positive as negative. Mean-
while, the terms in the denominator of r are all positive. Thus, in the limit that N,
the number of measurements, approaches infinity, the correlation coefficient r will

r

*Notice, however, that their significance is slightly different. For example, in Section 9.2 : N vy were
measurements of one number, and if these measurements were precise, o should be small. In the present case
S T Yy are measurements of different values of a variable, and even if the measurements are precise, there
i no reason to think o, will be small. Note also that some authors use the number 72, called the coefficient of
determination.

*If the line is exactly horizontal, then B = 0, and (9.16) gives r = 0/0; that is, r is undefined. Fortunately,
this special case is not important in practice, because it corresponds to y being a constant, independent of x,
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be zero. With a finite number of data points, we do not expect r to be exactly zero,
but we do expect it to be small (if the two variables really are unrelated).

If two variables x and y are such that, in the limit of infinitely many measure-
ments, their covariance o, is zero (and hence r = 0), we say that the variables are
uncorrelated. 1f, after a finite number of measurements, the correlation coefficient
r = o./o.0, is small, the hypothesis that x and y are uncorrelated is supported.

As an e'xample, consider the exam and homework scores shown in Figure 9.1,
These scores are given in Table 9.3. A simple calculation (Problem 9.12) shows that

Table 9.3. Students’ scores.

Student { 1 2 3 . < 6 7 8 9 10
Homework x; 90 60 45 100 15 23 52 30 71 88
Exam y, 90 71 65 100 45 60 75 85 100 80

the correlation coefficient for these 10 pairs of scores is r = 0.8. The professor
concludes that this value is “reasonably close” to 1 and so can announce to next
year’s class that, because homework and exam scores show good correlation, it is
important to do the homework.

If our professor had found a correlation coefficient r close to zero, he would
have been in the embarrassing position of having shown that homework scores have
no bearing on exam scores. If r had turned out to be close to —1, then he would
have made the even more embarrassing discovery that homework and exam scores
show a negative correlation; that is, that students who do a good job on homework
tend to do poorly on the exam.

Quick Check 9.2. Find the correlation coefficient for the data of Quick Check
9.1. Note that these measurements show a positive correlation; that is, high
values of x correlate with high values of y, and vice versa.

9.4 Quantitative Significance of r

The example of the homework and exam scores clearly shows that we do not yet
have a complete answer to our original question about how well data points support
a linear relation between x and y. Our professor found a correlation coefficient
r = 0.8, and judged this value “reasonably close” to 1. But how can we decide
objectively what is “reasonably close” to 1?7 Would r = 0.6 have been reasonably
close? Or r = 0.4? These questions are answered by the following argument.
Suppose the two variables x and y are in reality uncorrelated; that is, in the
limit of infinitely many measurements, the correlation coefficient r would be zero.




Section 9.4 Quantitative Significance of r

After a finite number of measurements, r is very unlikely to be exactly zero. One
can, in fact, calculate the probability that r will exceed any specific value. We will
denote by

ProbN(|r| = ro)

the probability that N measurements of two uncorrelated variables x and y will give
a coefficient r larger® than any particular r,. For instance, we could calculate the
probability

Proby(|r| = 0.8)

that, after N measurements of the uncorrelated variables x and y, the correlation
coefficient would be at least as large as our professor’s 0.8. The calculation of these
probabilities is quite complicated and will not be given here. The results for a few
representative values of the parameters are shown in Table 9.4, however, and a more
complete tabulation is given in Appendix C.

Table 9.4. The probability Proby(|r| = r,) that N measurements of two uncorrelated
variables x and y would produce a correlation coefficient with

Ir| = r,. Values given are percentage probabilities, and blanks indicate values

less than 0.05%.

N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 100 94 37 31 74 67 59 51 41 29 0
6 100 85 70 56 43 31 21 12 6 | 0
10 100 78 58 40 25 14 7 2 0.5 0
20 100 67 40 20 3 2 0.5 0.1 0
50 100 49 16 3 0.4 0

Although we have not shown how the probabilities in Table 9.4 are calculated,
we can understand their general behavior and put them to use. The first column
shows the number of data points N. (In our example, the professor recorded 10
students’ scores, so N = 10.) The numbers in each succeeding column show the
percentage probability that N measurements of two uncorrelated variables would
yield a coefficient r at least as big as the number at the top of the column. For
example, we see that the probability that 10 uncorrelated data points would give
Yl = 0.8 is only 0.5%, not a large probability. Our professor can therefore say it is
very unlikely that uncorrelated scores would have produced a coefficient with [r]
greater than or equal to the 0.8 that he obtained. In other words, it is very likely
that the scores on homework and examinations really are correlated.

Several features of Table 9.4 deserve comment. All entries in the first column
are 100%, because |r| is always greater than or equal to zero; thus, the probability

4Because a correlation is indicated if r is close to +1 or to —1, we consider the probability of getting the
absolute value |r| = r,.
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of finding |r| = 0 is always 100%. Similarly, the entries in the last column are all
zero, because the probability of finding [r| = 1 is zero.5 The numbers in the interme-
diate columns vary with the number of data points N. This variation also is casily
understood. If we make just three measurements, the chance of their having a corre-
lation coefficient with |r| = 0.5, say, is obviously quite good (67%, in fact); but if
we make 20 measurements and the two variables really are uncorrelated, the chance
of finding [r| = 0.5 is obviously very small (2%).

Armed with the probabilities in Table 9.4 (or in the more complete table in
Appendix C), we now have the most complete possible answer to the question of
how well N pairs of values (x;, v;) support a linear relation between x and y. From
the measured points, we can first calculate the observed correlation coefficient r,
(the subscript o stands for “observed”). Next, using one of these tables, we can
find the probability Proby(|r| = |r,|) that N uncorrelated points would have given a
coefficient at least as large as the observed coefficient ro It this probability is “suf-
ficiently small,” we conclude that it is very improbable that x and y are uncorrelated
and hence very probable that they really are correlated.

We still have to choose the value of the probability we regard as “sufficiently
small.” One fairly common choice is to regard an observed correlation r, as “sig-
nificant” if the probability of obtaining a coefficient » with |r| = |r,| from uncorre-
lated variables is less than 5%. A correlation is sometimes called “highly significant”
if the corresponding probability is less than 1%. Whatever choice we make, we do
not get a definite answer that the data are, or are not, correlated; instead, we have a
quantitative measure of how improbable it is that they are uncorrelated.

Quick Check 9.3. The professor of Section 9.3 teaches the same course the
following year and this time has 20 students. Once again, he records homework
and exam scores and this time finds a correlation coefficient r = 0.6. Would
you describe this correlation as significant? Highly significant?

9.5 Examples

Suppose we measure three pairs of values (x;» y;) and find that they have a correla-
tion coefficient of 0.7 (or —0.7). Does this value support the hypothesis that x and
y are linearly related?

Referring to Table 9.4, we see that even if the variables x and y were completely
uncorrelated, the probability is 51% for getting [r| = 0.7 when N = 3. In other
words, it is entirely possible that x and y are uncorrelated, so we have no worthwhile
evidence of correlation. In fact, with only three measurements, getting convincing
evidence of a correlation would be very difficult. Even an observed coefficient as
large as 0.9 is quite insufficient, because the probability is 29% for getting |r| = 0.9
from three measurements of uncorrelated variables,

? Although it is impossible that Irl > 1, it is, in principle, possible that [r] = 1. However, r is a continuous
variable, and the probability of getting |r| exactly equal to 1 is zero. Thus Proby(|r] = 1) = 0.
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If we found a correlation of 0.7 from six measurements, the situation would be
a little better but still not good enough. With N = 6, the probability of getting
rl = 0.7 from uncorrelated variables is 12%. This probability is not small enough
to rule out the possibility that x and y are uncorrelated.

On the other hand, if we found r = 0.7 after 20 measurements, we would have
strong evidence for a correlation, because when N = 20), the probability of getting
Il = 0.7 from two uncorrelated variables is only 0.1%. By any standards this is
very improbable, and we could confidently argue that a correlation is indicated. In
particular, the correlation could be called “highly significant,” because the probabil-
ity concerned is less than 1%.

Principal Definitions and Equations of Chapter 9

COVARIANCE

Given N pairs of measurements (x,, ¥,). . . ., (xy» yy) of two quantitics x and y,
we define their covariance to be

1 B L R
Oy = EZ(X; = Xy — ) [See (9.8)]

If we now use the measured values to calculate a function g(x, y), the standard
deviation of ¢ is given by

ax ay ax dy * [See (9.9)]

If the errors in x and y are independent, then o, = 0, and this equation reduces to
the usual formula for error propagation. Whether or not the errors are independent,
the Schwarz inequality (9.11) implies the upper bound

dq dq
dy

U}..

ax [See (9.12)]
CORRELATION COEFFICIENT

Given N measurements (x,, ¥,), . . . , (xy» yn) Of two variables x and y, we define
the correlation coefficient » as

po= Uy - Z (x: iy I) (y.- . y)
0,0y VZ (x;, — 222 (y; — V) [See (9.15)]
An equivalent form, which is sometimes more convenient, is
Tx,y; — NXy

r

- NCx2 = NDEy? — Ny) [See Problem 9.10]
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Values of » near 1 or —1 indicate strong linear correlation; values near () indicate
little or no correlation. The probability Proby(|r| > r,) that N measurements of two
uncorrelated variables would give a value of r larger than any observed value r, is
tabulated in Appendix C. The smaller this probability, the better the evidence that
the variables x and y really are correlated. If the probability is less than 5%, we say
the correlation is significant; if it is less than 1%, we say the correlation is highly
significant.

Problems for Chapter 9

For Section 9.2: Covariance in Error Propagation

9.1. * Calculate the covariance for the following four measurements of two quan-
tities x and y.

x 20 23 23 22
y: 30 32 35 31

9.2. * Each of five students measures the two times (¢ and T') for a stone to fall
from the third and sixth floors of a tall building. Their results are shown in Table
9.5. Calculate the two averages 7 and 7, and find the covariance o, using the layout
of Table 9.1.

Table 9.5. Five measurements of
two times, ¢t and 7 (in tenths of a
second); for Problem 9.2.

Student t T
A 14 20
B 12 18
C 13 18
D 15 22
E 16 22

[As you examine the data, note that students B and C get lower-than-average
answers for both times, whereas D’s and E’s answers are both higher than average.
Although this difference could be just a chance fluctuation, it suggests B and C may
have a systematic tendency to underestimate their times and D and E to overesti-
mate. (For instance, B and C could tend to anticipate the landing, whereas D and E
could tend to anticipate the launch.) Under these conditions, we would expect to get
a correlation of the type observed.]

9.3 X% (a) For the data of Problem 9.1, calculate the variances o, and o,* and
the covariance o,,. (b) If you now decide to calculate the sum ¢ = x + y, what will

be its standard deviation according to (9.9)? (¢) What would you have found for the
standard deviation if you had ignored the covariance and used Equation (9.10)?
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(d) In a simple situation like this, an easier way to find the standard deviation of ¢
is just to calculate four values of g [one for each pair (x, y)] and then find o, from
these four values. Show that this procedure gives the same answer as you got in
part (b).

9.4. %% (a) For the data of Problem 9.2, calculate the variances o> and o> and
the covariance ;. (b) If the students decide to calculate the difference T — ¢, what
will be its standard deviation according to (9.9)? (¢) What would they have found
for the standard deviation if they had ignored the covariance and used Equation
(9.10)? (d) In a simple situation like this, an easier way to find the standard devia-
tion of 7 — ¢ is just to calculate five values of T — ¢ [one for each pair (¢, T)] and
then find the standard deviation of these five values. Show that this procedure gives
the same answer as you got in part (b).

9.5. %% Imagine a series of N measurements of two fixed lengths x and y that
were made to find the value of some function g(x, y). Suppose each pair is measured
with a different tape; that is, the pair (x,, y,) is measured with one tape, (x,, y,) is
measured with a second tape, and so on. (a) Assuming the main source of errors is
that some of the tapes have shrunk and some stretched (uniformly, in either case),
show that the covariance o, is bound to be positive. (b) Show further, under the
same conditions, that o, = 0 ,» that is, o, is as large as permitted by the Schwarz
inequality (9.11). ' “

[Hint: Assume that the ith tape has shrunk by a factor X\, that is, present
length = (design length)/\;, so that a length that is really X will be measured as
x; = N;X. The moral of this problem is that there are situations in which the covari-
ance s certainly not negligible. ]

9.6. ** Here is an example of an experiment in which we would expect a nega-
tive correlation between two measured quantities (high values of one correlated with
low values of the other). Figure 9.2 represents a photograph taken in a bubble
chamber, where charged subatomic particles leave clearly visible tracks. A positive
particle called the K ™ has entered the chamber at the bottom of the picture. At
point A, it has collided with an invisible neutron (n) and has undergone the reaction

K"+ n - K°+ p.

The proton’s track (p) is clearly visible, going off to the right, but the path of the
K” (shown dotted) is really invisible because the K° is uncharged. At point B, the
K? decays into two charged pions,
K » n* +n-,

whose tracks are again clearly visible. To investigate the conservation of momentum
in the second process, the experimenter needs to measure the angles « and 8 be-
tween the paths of the two pions and the invisible path of the K°, and this measure-
ment requires drawing in the dotted line that joins A and B. The main source of
error in finding e and B is in deciding on the direction of this line, because A and
B are often close together (less than a cm), and the tracks that define A and B are

rather wide. For the purpose of this problem, let us suppose that this is the only
source of error.
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Figure 9.2. Tracks of charged particles in a bubble chamber. The dotted line shows the
direction of an invisible K°, which was formed at A and decayed at B; for Problem 9.6.

Suppose several students are given copies of Figure 9.2, and each draws in his
best estimate for the line AB and then measures the two angles « and B. The
students then combine their results to find the means @ and B, the standard devia-
tions o, and o, and the covariance o,p. Assuming that the only source of error is in
deciding the direction of the line AB, explain why an overestimate of a is inevitably
accompanied by an underestimate of . Prove that o, = oy and that the covariance
o,p is negative and equal to the largest value allowed by the Schwartz inequality,
Oup = —Tu0p

(Hint: Suppose that the ith student draws his line AB to the right of the true
direction by an amount A, Then his value for a will be o; = e + A Write the
corresponding expression for his value B; and compute the various quantities of
interest in terms of the A; and A.)

9.7. % Prove that the covariance o,, defined in (9.8) satisfies the Schwarz in-
equality (9.11),

‘U-x__\' I = U-.l'o._\‘ * (g ] ?)

[Hint: Let ¢ be an arbitrary number and consider the function
I » 2
AW = 5l =% + = PP = 0. (9.18)

Because A(f) = 0 whatever the value of ¢, even its minimum A, = 0. Find the
minimum A, and set A_;, = 0.]

For Section 9.3: Coefficient of Linear Correlation

9.8. * Calculate the correlation coefficient r for the following five pairs of mea-
surements:

P



Problems for Chapter 9
Do the calculations yourself, but if your calculator has a built-in function to compute
r, make sure you know how it works, and use it to check your value.

9.9. ¥  Calculate the correlation coefficient r for the following six pairs of mea-
surements:

x=1 2 3 5 6 7
y=5 6 6 8 8 9

Do the calculations yourself, but if your calculator has a built-in function to compute
r, make sure you know how it works, and use it to check your value.

9.10. *¥% (a) Prove the identity
2(x; =Xy — Y = Zxy; — Nxy.
(b) Hence, prove the correlation coefficient » defined in (9.15) can be written as
_— 2 xy; — NXy
VE 57 - NBEy? - N7D)

Many calculators use this result to find » because it avoids the need to store all the
data before calculating the means and deviations.

(9.19)

For Section 9.4: Quantitative Significance of r

9.11. % In the photoelectric effect, the kinetic energy K of electrons ejected from
a metal by light is supposed to be a linear function of the light’s frequency f,

K = hf — g, (9.20)

where i and ¢ are constants. To check this linearity, a student measures K for N
different values of f and calculates the correlation coefficient r for her results. (a) If
she makes five measurements (N = 5) and finds r = 0.7, does she have significant
support for the linear relation (9.20)? (b) What if N = 20 and r = 0.5?

9.12. % (a) Check that the correlation coefficient r for the 10 pairs of test scores
in Table 9.3 is approximately (0.8. (By all means, use the built-in function on your
calculator, if it has one.) (b) Using the table of probabilities in Appendix C, find the
probability that 10 uncorrelated scores would have given [r| = 0.8. Is the correla-
tion of the test scores significant? Highly significant?

9.13. * A psychologist, investigating the relation between the intelligence of fa-
thers and sons, measures the Intelligence Quotients of 10 fathers and sons and ob-
tains the following results:

Father: 74 83 8 9 98 100 106 107 120 124
Son: 76103 99 109 111 107 91 101 120 119
Do these data support a correlation between the intelligence of fathers and sons?

9.14. * Eight aspiring football players are timed in the 100-meter dash and the
1,500-meter run. Their times (in seconds) are as follows:

Dash: 12 11 13 14 12 15 12 16

Run: 280 290 220 260 270 240 250 230
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Calculate the correlation coefficient . What kind of correlation does your result
suggest? Is there, in fact, significant evidence for a correlation?

9.15. ** Draw a scatter plot for the six data pairs of Problem 9.9 and the least-
squares line that best fits these points. Find their correlation coefficient r. Based on
the probabilities listed in Appendix C, would you say these data show a significant
linear correlation? Highly significant?

9.16. ** (a) Draw a scatter plot for the five data pairs of Problem 9.8 and the
least-squares line that best fits these points. Find their correlation coefficient r.
Based on the probabilities listed in Appendix C, would you say these data show a
significant linear correlation? Highly significant? (b) Repeat for the following data:
x=1 2 3 4 5
y =46 3 0 2




