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break the signal into a large number of segments, take the DFT of each
segment, convert into polar form, and then average the magnitudes together.
In the simplest case, the unknown frequency response is taken as the average
spectrum of the old recording, divided by the average spectrum of the modern
recording. (The method used by Stockham et al. is based on a more
sophisticated technique called homomorphic processing, providing a better
estimate of the characteristics of the recording system).

Optimal Filters

Figure 17-7a illustrates a common filtering problem: trying to extract a
waveform (in this example, an exponential pulse) buried in random noise. As
shown in (b), this problem is no easier in the frequency domain. The signal has
a spectrum composed mainly of low-frequency components. In comparison, the
spectrum of the noise is white (the same amplitude at all frequencies). Since
the spectra of the signal and noise overlap, it is not clear how the two can best
be separated. In fact, the real question is how to define what "best" means.
We will look at three filters, each of which is "best" (optimal) in a different
way. Figure 17-8 shows the filter kernel and frequency response for each of
these filters. Figure 17-9 shows the result of using these filters on the example
waveform of Fig. 17-7a.

The moving average filter is the topic of Chapter 15. As you recall, each
output point produced by the moving average filter is the average of a certain
number of points from the input signal. This makes the filter kernel a
rectangular pulse with an amplitude equal to the reciprocal of the number of
points in the average. The moving average filter is optimal in the sense that it
provides the fastest step response for a given noise reduction.

The matched filter was previously discussed in Chapter 7. As shown in Fig.
17-8a, the filter kernel of the matched filter is the same as the target signal
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Example of optimal filtering. In (a), an exponential pulse buried in random noise. The frequency spectra of
the pulse and noise are shown in (b). Since the signal and noise overlap in both the time and frequency
domains, the best way to separate them isn't obvious.
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Example of optimal filters. In (a), three filter kernels are shown, each of which is optimal in some sense. The
corresponding frequency responses are shown in (b). The moving average filter is designed to have a
rectangular pulse for a filter kernel. In comparison, the filter kernel of the matched filter looks like the signal
being detected. The Wiener filter is designed in the frequency domain, based on the relative amounts of signal
and noise present at each frequency.

being detected, except it has been flipped left-for-right. The idea behind the
matched filter is correlation, and this flip is required to perform correlation
using convolution. The amplitude of each point in the output signal is a
measure of how well the filter kernel matches the corresponding section of the
input signal. Recall that the output of a matched filter does not necessarily
look like the signal being detected. This doesn't really matter; if a matched
filter is used, the shape of the target signal must already be known. The
matched filter is optimal in the sense that the top of the peak is farther above
the noise than can be achieved with any other linear filter (see Fig. 17-9b).

The Wiener filter (named after the optimal estimation theory of Norbert
Wiener) separates signals based on their frequency spectra. As shown in Fig.
17-7b, at some frequencies there is mostly signal, while at others there is
mostly noise. It seems logical that the "mostly signal” frequencies should be

‘passed through the filter, while the "mostly noise" frequencies should be

blocked. The Wiener filter takes this idea a step further; the gain of the filter
at each frequency is determined by the relative amount of signal and noise ar
that frequency:

EQUATION 17-1

The Wiener filter. The frequency response, S 2
represented by H[f], is determined by the H[ = [f]
frequency spectra of the noise, N[ /], and - S[_f ]2+N[ f]2

the signal, S[f]. Only the magnitudes are
important; all of the phases are zero.

This relation is used to convert the spectra in Fig. 17-7b into the Wiener
filter's frequency response in Fig. 17-8b. The Wiener filter is optimal in the
sense that it maximizes the ratio of the signal power to the noise power
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Example of using three optimal filters. These
signals result from filtering the waveform in Fig. 1.0
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(over the length of the signal, not at each individual point). An appropriate
filter kernel is designed from the Wiener frequency response using the custom
method.

While the ideas behind these optimal filters are mathematically elegant, they
often fail in practicality. This isn't to say they should never be used. The point
is, don't hear the word "optimal" and stop thinking. Let's look at several
reasons why you might not want to use them.

First, the difference between the signals in Fig. 17-9 is very unimpressive. In
fact, if you weren't told what parameters were being optimized, you probably
couldn't tell by looking at the signals. This is usually the case for problems
involving overlapping frequency spectra. The small amount of extra
performance obtained from an optimal filter may not be worth the the
increased program complexity, the extra design effort, or the longer execution
time.

Second: The Wiener and matched filters are completely determined by the
characteristics of the problem. Other filters, such as the windowed-sinc and
moving average, can be tailored to your liking. Optimal filter advocates would
claim that this diddling can only reduce the effectiveness of the filter. This is
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very arguable. Remember, each of these filters is optimal in one specific way
(i.e., "in some sense"). This is seldom sufficient to claim that the entire
problem has been optimized, especially if the resulting signals are interpreted
by a human observer. For instance, a biomedical engineer might use a Wiener
filter to maximize the signal-to-noise ratio in an electro-cardiogram. However,
it is not obvious that this also optimizes a physician's ability to detect irregular
heart activity by looking at the signal.

Third: The Wiener and matched filter must be carried out by convolution,
making them extremely slow to execute. Even with the speed improvements
discussed in the next chapter (FFT convolution), the computation time can be
excessively long. In comparison, recursive filters (such as the moving average
or others presented in Chapter 19) are much faster, and may provide an
acceptable level of performance.




