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ABSTRACT
The objective of this work is to establish a single channel noise reduction algorithm for speech enhancement
integrated in DSP systems. The main emphasis is on spectral weighting. The chosen algorithm is based on a
Minimum Mean Square Error Log Spectral Amplitude approach. One of the crucial tasks for good results, i.e.
natural and intelligible speech in combination with well attenuated noise and low spectral distortion, is a
balanced estimation and weighting of the noise magnitude spectrum.

INTRODUCTION
In modern hands free speech communication environments often
occurs the situation that the speech signal is superposed by
background noise (see Figure 1). This is particular  the case if the
speaker is not located as close as possible to the microphone. The
speech signal intensity decreases with growing distance to the
microphone. It is even possible that background noise sources are
captured at a higher level than the speech signal. The noise distorts
the speech and words are hardly intelligible.

In order to improve the intelligibility and reduce the listeners
(FES) stress by increasing the signal to noise ratio a noise
reduction or - in a wider sense � an also called speech enhance-
ment algorithm is applied.

The objective of this work is to establish a model of a single
channel speech enhancement algorithm using MATLAB as a base
for a DSP software implementation. The main emphasis is on
spectral weighting. The chosen algorithm with the best results is
based on a Minimum Mean-Square Error Log-Spectral Amplitude
(MMSE-LSA) approach.

NOISE REDUCTION PRINCIPLES
The requirements of a noise reduction system for speech
enhancement are:

• Intelligibility and naturalness of the enhanced signal
• Improvement of signal-to-noise ratio
• Short signal delay
• Computational simplicity

The quality of the enhanced signal is a diverse issue, it may be
characterised by the terms intelligibility and naturalness. There are
several methods for performing noise reduction, but all can be
regarded as a kind of filtering. In our application speech and noise
are mixed to one signal channel. They reside in the same frequency
band and may have similar correlation properties. Consequently
the filtering will inevitably have an effect on both the speech and
the noise. Therefore it is a very challenging task to distinguish
between them. I.e. speech components can be detected as noise and
thus will be suppressed as well. Especially fricatives and plusives
are attenuated due to their noise-like properties. Furthermore the
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residual noise characteristics should preserve the characteristics of
the background noise in the recording environment. Typical single
channel noise reduction algorithms add a synthetic noise, also
called �Musical Noise�, which sounds artificial and has a disturbing
effect on the listener.

Single channel noise reduction algorithms are based on the fact
that the statistical properties of speech are only stationary over
short periods of time whereas the noise often can be assumed to be
stationary over much longer periods.

Another aim for the algorithm design is the limitation of the signal
delay because of its annoying effect in dialog situations.

The noise reduction algorithms can be split into two groups: time
domain algorithms and those utilising some kind of transform, e.g.
Fourier Transform. Whereas the filter calculation for time domain
solutions generally relies on the usage of correlation estimates,
there is a large variety of algorithms operating in the frequency
domain.

Noise reduction in frequency domain
The fundamental concept of a frequency domain solution is
spectral weighting and block processing. The architecture of such a
system is presented in Figure 2. It consists of three major
components:

• the analysis/synthesis framework for
time domain / frequency domain transformation

• the noise estimation

• the weighting function.

In a typical hands free situation (Fig. 1) the recorded time domain
signal x(k) is composed of the superposition of speech s(k) and
noise n(k):

)()()( knkskx += (equ. 1)

The basic idea of spectral subtraction is to estimate the noise
spectrum Nest(n,Ωi) and to subtract it from the observed signal
spectrum X(n,Ωi):

Y(n,Ωi) = Sest(n,Ωi) = X(n,Ωi) � Nest(n,Ωi) (equ. 2)

where n designates the current frame and Ωi the frequency bin.

If the noise estimation equals the disturbing noise spectrum the
output signal spectrum Y(n,Ωi), also designated as speech
estimation Sest(n,Ωi), will be very similar to the noiseless speech
spectrum S(n,Ωi).

Because simple spectral subtraction shows limited performance in
manner of speech quality, equ. 2 is converted to
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to enable further refinements by deriving a more sophisticated
weighting function H(n,Ωi) (see "Spectral Weighting"). Thus the
enhanced output is given as the weighted input signal spectrum.
The weighting function, which can be regarded as a kind of an
adaptive frequency domain filter, is calculated of both estimated
noise and current spectrum as depicted in Figure 2.

Apart from rather low SNRs the magnitude of the noise will not be
high enough to cause a considerable phase change of from s(k) to
x(k). Since the human perception is almost not sensitive to
distortions of the phase of the signal, it is sufficient to enhance the
magnitude spectrum of the input signal X(n,Ωi). Therefore the
signal is transformed to the frequency domain, filtered and then
transformed back to the time domain. The processing is organised
block-wise, i.e. the input signal is partitioned into overlapping
frames of equal size (see next chapter) and collected over time.

Estimating the noise spectrum Nest(n,Ωi) is one of the major tasks
of a noise cancelling system. Based on the above mentioned
assumption that the noise part of the signal is stationary over
longer periods of time than the speech part, an estimate of the noise
is obtained by extracting slowly changing portions of the signal
spectrum.

The output frame is obtained by applying the inverse frequency
transformation to the weighted enhanced spectrum Y(n,Ωi) and the
noisy phase ϕx(n,Ωi).

ANALYSIS/SYNTHESIS FRAMEWORK
Since in a single channel approach the estimation of the noise and
the weighting function can only be derived in frequency domain,
the time domain input signal has to be transformed. The transfor-
mations are performed by means of standard analysis and synthesis
systems operating on a frame-by-frame basis. The frame-wise

x(k) = s(k)+ n(k)
Enhanced

Signal

y(k)
Noise reduction

processing

Speech s(k)

FES
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Fig. 1: Single channel noise reduction setup
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Fig. 2: Block diagram of the spectral weighting approach
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processing is not only motivated by the availability of the DFT but
also by the fact that speech is short time stationary. Therefore the
weighting rule H(n,Ωi) has to be adapted from one frame to
another. For the analysis a data frame of L consecutive samples is
taken in intervals of M samples. L equals the window size, M
equals the distance of the frame borders of two neighbouring
frames also called frame rate. The difference L minus M equals the

overlap between consecutive frames. The data frame is multiplied
by a hanning window and zero padded to the new frame length of
LZ, such that the samples are centred in the new frame. The initial
zeros are introduced to further reduce the aliasing effect which can
arise when filtering is performed in frequency domain. The
analysis is finalised by the LZ-point FFT. Consequently the
magnitude spectrum of the current frame n is:
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The window length L should be chosen according to the speech
properties: In general terms it should be of the same order as the
time during which the speech can be considered as stationary. The
overlap is set to 50% to 75% (of L).

The result Y(n,Ωi) of the multiplication of the input signal spectrum
with the real valued weighting function is transformed back into

the time domain by an inverse FFT and the output signal y(k) is
synthesised by overlap and add.

NOISE ESTIMATION
For noise estimation there exist two approaches. The simplest form
is the analysis during speech pauses. A typical human dialog
consists of 40 % speech and 60 % speech pauses, where
x(k) = n(k). But this method has two obvious disadvantages: First,
the changes in the noise spectrum during speech periods can not be
detected, i.e. the noise has to be stationary over long time periods,
and second, a voice activity detection (VAD) must be introduced to
interrupt noise estimation between speech activity. One major
difficulty in this case is the recognition of unvoiced phonemes.

The second possibility which is used in our approach is a minimum
statistics algorithm also proposed by [7]. The algorithm is based on
the observation that for each frequency band Ωi  the smallest value
of ),(�

ixx nR Ω  (the power spectral density (PSD) estimate of a
noisy speech signal) that is observed in a sufficiently large number
of consecutive frames corresponds to the noise only. Consequently,
by tracking these minima in a sliding window covering several
frames, an estimate for the noise magnitude spectrum can be
obtained. To get a reliable noise power estimation the frame size
must be large enough to bridge speech activity.

At first the PSD estimates of the noisy speech signal ),(�
ixx nR Ω are

to be calculated. An effective way is offered by an exponential
decaying window (first order recursive averaging):

),()1(),1(�),(� 2
iNixxNixx nXnRnR Ω−+Ω−=Ω αα  (equ. 5)

where αN (αN ∈[0;1]) is the smoothing factor. The higher this
factor is, the more stable and smooth the estimate will be. On the
other hand the ability to track sudden changes will decrease. When
equ. 5 is used for the estimation of the noise PSD a relatively low
factor αN should be chosen (we achieved the best results with
αN  = 0.85).

The minimum noise power estimate Nmin
2(n,Ωi) of subband i is

obtained by frame-wise comparison of the actual smoothed signal
power estimate ),(�

ixx nR Ω  and some preceding PSD values

),(�
ixx rnR Ω−  with r = 1, 2, 3, . . . , R-1, which are stored in a

FIFO register. The introduction of that FIFO register is the special
feature of the minimum statistics algorithm. The depth of the FIFO
is given by R. (See Fig. 4 for the structure of the noise power
estimation algorithm.)

If the actual subband power X2(n,Ωi) is smaller than the estimated
minimum noise power Nmin

2(n,Ωi) the minimum noise power
spectrum is updated immediately:

T

),(2
inX Ω

),(�
iXX nR Ω

)),1((�

),2(�
),1(�

),(�

iXX

iXX

iXX

iXX

RnR

nR

nR

nR

Ω−−

Ω−

Ω−

Ω

K

min

),(2
inX Ω

Nest2(n,Ωi)
1-αN

αN

βoverest

Nmin2(n,Ωi)

FIFO-Register

Fig. 4: Structure of the subband noise power estimation algorithm
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Thus, in case of decreasing noise power, we achieve a fast update
of the minimum power estimate. In case of increasing noise power
the update of noise estimates is delayed by R samples.

To compensate the bias of the minimum estimate the output noise
power estimate Nest

2(n,Ωi) is obtained by weighting the minimum
noise power with the overestimation factor βoverest with the best
results for βoverest  = 1.5 :
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which describes the unknown input signal SNR and an a posteriori
SNR
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which can be interpreted as the instantaneous SNR. These SNRs
are to be estimated. The MMSE-LSA weighting rule is defined for
discrete frequencies Ωi and for a frame n. It minimises the mean
squared error of the logarithmic spectra of the original undisturbed
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e number of algorithms for single channel noise
t of them operating in the frequency domain.
mary ideas are spectral subtraction and Wiener
mon disadvantage of these early algorithms is that

 output signals suffer from musical noise. These
e to randomly distributed spectral peaks in the re-
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his occurs if the actual noise spectrum differs
m the averaged magnitude spectrum. Among many
ed to reduce the musical noise phenomenon the
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ction applications.
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alah derived a Minimum Mean-Square Error
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hat speech and noise spectral components can be
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 further developments of the original idea. Here we
SE rule by [4] and the derivative Minimum Mean-

Log-Spectral Amplitude (MMSE-LSA) Estimator
r examined and described in [2] and [3]).

speech signal and the processed output signal
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An estimate for the a posteriori SNR can be obtained easily,
because in equ. 9 the numerator equals the subtraction of the
estimated noise spectrum from the input signal spectrum X(n, Ωi).
So it can be calculated as
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Following the "Decision-Directed" estimation approach in [4] the
a priori SNR can be derived as a weighted sum of the a posteriori
SNR and the SNR computed with the speech power estimation of
the previous output frame (the equations can be found in [2] and
[3] too.):
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whereas Q[x] is given by Q[x] = x if ≥ 0 and Q[x] = 0 if x < 0 to
ensure, that this estimate is always greater or equal to zero. Since
the weighting factor αH should be selected close to one, the second
term dominates in the equation for SNRprio (equ. 14). The a priori
SNR represents a smoothed version of the instantaneous SNR
estimate. The higher αH is, the more stable SNRprio is.

In equ. 11 we note that the attenuation H(n,Ωi) is mainly a function
of the a priori SNR, whereas the a posteriori SNR acts as a
correction term whose influence is limited to the case where
SNRprio is low. So the a priori SNR is the dominant parameter in
the weighting function. Little attenuation H(n,Ωi) is obtained, if
SNRprio is high, and high attenuation is obtained if SNRprio is low. In
the second case the attenuation H(n,Ωi) increases for higher SNRpost
values.
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e subband power (green/light grey) and estimated
ower (red/black) of a noisy speech signal
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The estimation rule of the a priori SNR and the interaction with
the a posteriori SNR are the key factors for reducing the musical
tone artefacts by the MMSE-LSA weighting rule (e.g. see [2]).
Musical tones appear when local bursts arise in the instantaneous
noise spectrum which are larger than the average noise level.
However applying equ. 13 such a peak will have an immediate
effect on SNRpost, which will increase, whereas the effect on SNRprio
will be very weak because of the recursive smoothing. Thus the
attenuation H(n,Ωi) will increase so that the noise peak will be
suppressed.

Concerning the application to speech signals the mechanism des-
cribed above will cause suppression of the initial phase of im-
portant plosive parts of the speech as well. So a trade-off between
speech distortion and musical noise level must be archived when
choosing the factor αH.

CONCLUSION
In the simulation the described noise suppression system shows
good results concerning the naturalness of the speech at a
sufficiently high amount of noise reduction. This is valid as long as
all spectral components of the noise signal are below the related
components of the speech signal. The musical noise artefacts are
considerably reduced in comparison to a simulation model with a
simple spectral subtraction algorithm. However, the musical noise
is still audible and therefore future work will be done to further
eliminate this phenomenon.

Our implementation operates at a sampling frequency of 8 kHz,
The signal delay of 32 ms is caused mainly by the FFT
transformation. The requirement of processing power is about 8
MIPS. We achieve a maximum noise reduction of 20 dB. The
Figures 6a and 6b show the performance of the developed system.

The upper figure is the spectrogram of a human speech recorded in
a driving car. The second picture shows the result after the
enhancement.

Sampling
frequency

Delay Max.
reduction

Complexity

8000 Hz 32 ms 20 dB ~ 8 MIPS
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