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voltage/resistance 

BANDWIDTH-NARROWING TECHNIQUES 

15.12 The problem of signal-to-noise 
ratio 

Up to this point we have been talking 
about the various experimental quantities 
that can be detected, how you might 
measure them, and what sort of trade- 
offs you face. As luck would have it, 
the signals you often want to measure are 
buried in noise or interference, frequently 
to the extent that you can't even see them 
on an oscilloscope. Even when external 
noise isn't a problem, the statistics of the 
signal itself may make detection difficult, 
as, for example, when counting nuclear 
disintegrations from a weak source, with 
only a few counts detected per minute. 
Finally, even when the signal is detectable, 
you may wish to improve the detected 
signal strength in order to make a more 
accurate measurement. In all these cases 
some tricks are needed to improve the 
signallnoise ratio; as you will see, they all 
amount to a narrowing of the detection 
bandwidth in order to preserve the desired 
signal while reducing the total amount of 
(broadband) noise accepted. 

The first thing you might be tempted to 
try when thinking of reducing the band- 
width of a measurement is to hang a sim- 
ple low-pass filter on the output, in order 
to average out the noise. There are cases 
where that therapy will work, but most of 
the time it will do very little good, for a 
couple of reasons. First, the signal itself 
may have some high frequencies in it, or 
it may be centered at some high frequency. 
Second, even if the signal is in fact slowly 

varying or static, you invariably have to 
contend with the reality that the density 
of noise signal usually has a l/ f character, 
so as you squeeze the bandwidth down 
toward dc you gain very little. Electronic 
and physical systems are twitchy, so to 
speak. 

In practice, there are a few basic tech- 
niques of bandwidth narrowing that are 
in widespread use. They go under names 
like signal averaging, transient averaging, 
boxcar integration, multichannel scaling, 
pulse-height analysis, lock-in detection, 
and phase-sensitive detection. All these 
methods assume that you have a repetitive 
signal; that's no real problem, since there 
is almost always a way to force the signal to 
be periodic, assuming it isn't already. Let's 
see what is going on. 

15.13 Signal averaging and multichannel 
averaging 

By forming a cumulative sum of a repeti- 
tive signal versus time, you can improve 
the signal/noise ratio enormously. This 
usually goes under the heading of "signal 
averaging," and it is often applied to ana- 
log signals. We will consider first what may 
seem to be an artificial situation, namely 
a signal consisting of pulses whose rate 
is proportional to the amplitude of some 
sought-after waveform versus time. We be- 
gin with this example because it makes our 
calculations easier. In reality, it isn't even 
an artificial situation, since it is the rule 
when using pulse-counting electronics such 
as particle detectors or photomultipliers at 
low light levels. 

Multichannel scalers 
We begin with multichannel scaling be- 
cause it typifies all these techniques and, in 
addition, is easy to understand and quan- 
tify. The multichannel scaler (MCS) is a 
piece of hardware that contains a set of 
memory registers (typically 1024 or more), 
each of which can store a number up to 1 
million (20 bits binary or 24 bits BCD) or 
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so. The MCS accepts pulses (or continu- 
ous voltages, as will be described later) as 
its input; in addition, it accepts either a 
channel-advance signal (a pulse) or a par- 
allel multibit channel address. Each time 
there is an input pulse, the MCS incre- 
ments the count in the memory channel 
currently being addressed. Additional in- 
puts let you reset the address to 0, clear the 
memory, etc. 

To use an MCS you need a signal that re- 
peats itself at some interval. Let's suppose 
for the time being that the phenomenon 
you're observing is itself periodic, with pe- 
riod T; although this is not the case most of 
the time (you usually have to coax the ex- 
periment into periodicity), there are good 
examples in the real world of strictly pe- 
riodic phenomena, e.g., the light output 
of a pulsar. Let's suppose that the input 
consists of pulses, with rate proportional 
to the signal plus a large background rate 
of noise pulses, i.e., pulses randomly dis- 
tributed in time (again, realistic for pul- 
sars, where the actual signal is swamped 
by light from the night sky). By sending 
timing pulses to the channel advance and 
reset inputs, we arrange to sweep the MCS 
repetitively through its 1024 channels once 
every T seconds, accumulating additional 
input (signal plus background) counts into 
the memory channels each sweep. As time 
goes on, the signal will keep adding counts 
to the same subgroup of channels, with 
the background noise adding counts in all 
channels, because the sweep through the 
entire set of channels is timed to coincide 
with the signal's periodicity. Thus the sig- 
nal keeps adding on top of itself, the accu- 
mulated sum getting larger after each rep- 
etition. 

Signal-to-noise computation 

Let's see what happens. To be specific, let 
the background pulse rate have an average 
value that contributes nb pulses per chan- 
nel each sweep, with the signal contribut- 
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Figure 15.34. Multichannel signal averaging 
(pulse input). 

ing an additional n, pulses into the chan- 
nel where its peak lies (Fig. 15.34). Let's 
give ourselves a poor signal/background ra- 
tio, i.e., n, << nb, meaning that most 
of the counts added during each sweep 
through the memory are contributed by 
background, rather than signal. Now, when 
the memory contents are graphed, the sig- 
nal should be recognizable as a bump 
above the background. You might think 
the criterion is that the number of sig- 
nal counts in a channel with signal should 
be comparable with the number of counts 
contributed to that channel by the back- 
ground noise. That would be wrong, since 
the average value contributed by noise is 
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quite irrelevant; all that matters is the level 
of fluctuations of that average value about 
the mean. 

Thus, a poor input signallnoise ratio 
is actually characterized by n, << 6, 
meaning that in one sweep the signal will 
not be recognizable above the "noise" con- 
sisting of an undulating graph of accumu- 
lated random background pulses. For pur- 
poses of computation, let's let n, = 10 and 
nb = 1000. Therefore, in one sweep an ini- 
tially cleared MCS will acquire an average 
of 1000 counts in each channel, with an 
additional 10 counts in the channels where 
the signal peaked. Since the fluctuations in 
the channel totals equal about 31 (square 
root of 1000), the actual signal bump is 
left pretty much buried in the noise after 
only one sweep. But after 1000 sweeps, 
say, the average count in any channel is 
about 1,000,000, with fluctuations of 1000. 
The channels where the signal peaks have 
an additional 10,000 counts (1000 sweeps 
x 10 countslsweep), for a signallnoise ra- 
tio of 10. In other words, the signal has 
emerged from the background. 

channel number (velocity) 

Example: Mossbauer resonance 

Figure 15.35 shows the results of just 
such an analysis, in this case a Mossbauer 
resonance signal consisting of six dips in 
the transmission of an enriched iron-57 
foil to gamma radiation from a cobalt- 
57 radioactive source. In this case n b  = 
0.4 and n, = 0.1, approximately, for a 
situation of poor signallnoise ratio. The 
Mossbauer signal is totally swamped by 
noise even after 10 or 100 sweeps; it 
becomes visible only after 1000 sweeps 
or so. The results are shown after 1000, 
10,000, and 100,000 sweeps, with each 
graph scaled to keep this signal size the 
same. Note the rise of the "baseline" 
caused by the steady background, as well 
as the nice enhancement of SNR with time. 

It is easy to see by what factor the ra- 
tio of signal amplitude to background fluc- 
tuation ("noise") increases as time goes 
on. The signal amplitude increases propor- 
tional to t; the average background count 
("baseline") also increases proportional 
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to t, but thefluctuations in the background 
count ("noise") rise only proportional to 
the square root of t. Therefore, the 
ratio between signal and fluctuations in 
background increases as t divided by the 
square root oft. In other words, the signal- 
to-noise ratio improves in proportion to 
the square root of time. 

Multichannel analysis of 
analog signals (signal averaging) 

You can play the same game with analog 
signals by simply using a voltage- 
to-frequency converter at the input. Com- 
mercial MCSs often provide the electron- 
ics for you, giving you a choice of analog 
or pulse input modes. In this form you 
often hear these gadgets called signal aver- 
agers or transient averagers. One company 
(TMC) called theirs a "CAT" (computer 
of averaged transients), and the name has 
stuck, in some circles at least. 

It is possible to make a completely ana- 
log MCS by using a set of integrators to 
store the accumulated signal. A simpler 
device, known as a boxcar integrator, is an 
analog signal averager with a single "slid- 
ing channel." With the enormous reduc- 
tions in digital memory prices that have 
taken place in the last decade, such ana- 
log signal averagers are becoming imprac- 
tical, except perhaps for specialized appli- 
cations. 

Multichannel analysis as 
bandwidth narrowing 

We suggested at the beginning of this dis- 
cussion that there was an equivalence be- 
tween the magical SNR-reduction methods 
and a reduction in effective measurement 
bandwidth. It is not hard to see how that 
goes in this case. Imagine another (in- 
terfering) signal added into the input, but 
with periodicity TI slightly different from 
the desired signal of period T. After just 
a few sweeps, its signal will also begin to 

accumulate, causing trouble. But wait - 
as time goes on, its "bump" will gradually 
drift along through the channels, succes- 
sively contributing counts through all the 
channels. It will have drifted all the way 
around through all the channels once after 
a time. 

t = l /Af  

where Af is the frequency difference 
1/T - l/T1 between the desired signal and 
the interfering signal. 

EXERCISE 15.1 
Derive this result. 

In other words, by accumulating data 
for a time t (as given in the preceding 
equation), the interfering signal has been 
spread equally through all the channels. 
Another way to say the same thing is that 
the measurement's bandwidth is reduced 
roughly to 

A f = l / t  

after accumulating data for time t. By 
running for a long time, you reduce the 
bandwidth and exclude nearby interfering 
signals! In fact, you also exclude most 
of the noise, since it is spread evenly 
in frequency. Viewed in this light, the 
effect of multichannel analysis is to narrow 
the accepted bandwidth, thereby accepting 
the signal power but squeezing down the 
amount of noise power. 

Let's see how the calculation goes. After 
time t, the bandwidth is narrowed to 
A f = llt. If the noise power density is p, 
watts per hertz, and the signal power P, 
stays within the measurement bandwidth, 
then the SNR after time t is 

SNR = 10 log(P,t/p,) 

The signal amplitude improves propor- 
tionally to the square root of t (3dB for 
each doubling of t), just as we found in 
the analysis we did earlier by considering 
the number of counts per channel and its 
fluctuations. 
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15.14 Making a signal periodic 

We mentioned initially that all signal- 
averaging schemes require a signal that re- 
peats many times in order to realize signif- 
icant reduction in signallnoise ratio. Since 
most measurements don't involve intrinsi- 
cally periodic quantities, it is usually nec- 
essary to force the signal to repeat. There 
are many ways to do this, depending on 
the particular measurement. It is probably 
easiest to give a few examples, rather than 
attempt to set down rules. 

A measurable quantity that depends on 
some external parameter can easily be 
made periodic - just vary the external 
parameter. In NMR (nuclear magnetic 
resonance) the resonance frequency varies 
linearly with the applied field, so it is 
standard to modulate the current in a small 
additional magnet winding. In Mossbauer 
studies you vary the source velocity. In 
quadrupole resonance you can sweep the 
oscillator. 

In other cases an effect may have its own 
well-defined transient, but allow external 
triggering. A classic example is the pulse 

of depolarization in a nerve fiber. In 
order to generate a clean graph of the 
waveform of such a pulse, you can simply 
trigger the nerve with an externally applied 
voltage pulse, starting the MCS sweep 
at the same time (or even "anticipating" 
the trigger by starting the sweep, then 
triggering the nerve with a delayed pulse); 
in this case you would pick a repetition 
period long enough so that the nerve 
has fully recovered before the next pulse. 
This last case illustrates graphically the 
importance of a repeatable phenomenon 
as fodder for signal averaging; if the frog 
whose leg is twitching chances to expire, 
your experiment is over, whatever the 
signallnoise ratio! 

It should be pointed out that cases where 
the phenomenon you're measuring has its 
own well-defined periodicity may in fact 
be the most difficult to work with, since 
you have to know the periodicity precisely. 
The graph of the "light curve" (brightness 
versus time) in Figure 15.36 is an example. 
We made this curve by using an MCS on 
the output of a photomultiplier stationed 
at the focus of a 60 inch telescope, run 

Crab nebula pulsar ( NP0531) 

l~ght  curve 

32ps per point 

time (ms) 

Figure 15.36. Crab nebula pulsar brightness versus time (light curve). 
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exactly in synchronism with the pulsar's Phase detectors 
rotation. Even with that size telescope it 
required an average of approximately 5 
million sweeps to generate such a clean 
curve, since the average number of de- 
tected photons for each entire pulsar pulse 
was about 1. With such a short period, that 
puts enormous accuracy requirements on 
the MCS channel-advance circuitry, in this 
case requiring clocks of part-per-billion sta- 
bility and frequent adjustment of the clock 
rate to compensate for the earth's motion. 

It is worth saying again that the essence 
of signal averaging is a reduction in band- 
width, gained by running an experiment 
for a long period of time. The bottom 
line here is the total length of the exper- 
iment; the particular rate of scanning, or 

In Section 9.27 we described phase detec- 
tors that produce an output voltage pro- 
portional to the phase difference between 
two digital (logic-level) signals. For 
purposes of lock-in detection, you need to 
know about linear phase detectors, since 
you are nearly always dealing with analog 
voltage levels. 

The basic circuit is shown in Figure 
15.37. An analog signal passes through a 
linear amplifier whose gain is reversed by a 
square-wave "reference" signal controlling 
a FET switch. The output signal passes 
through a low-pass filter, RC. That's all 
there is to it. Let's see what you can do 
with it. 

- 
modulation, is usually not important, as e-detectoro,,tput. To analyze the 
long as it takes far from the phase-detector operation, let's assume we 
l/f noise present near dc. You can think a signal of the modulation as simply shifting the 
signal you wish to measure from dc up to Es cos(wt + q5) 
the modulating frequency. The effect of the 
long data accumulation is then to center to such a phase detector, whose reference 

signal is a square wave with transitions at an effective bandwidth A f = l /T  at fmod, 
rather than at dc. the zeros of sinwt, i.e., at t = 0, T / W ,  

2rlw. etc. Let us further assume that 

15.15 Lock-in detection 

we' a;erage the output, VOut, by passing 
it through a low-pass filter whose time 
constant is longer than one period: 

T = RC >> T = 2n/w 
This is a method of considerable subtlety. 
In order to understand the method, it is Then the low-pass Output is 
necessary to take a short detour into the 
phase detector, a subject we first took up (E, cos(wt + q5))l;lw 

in Section 9.27. 2a/w 
- (E,  cos(wt + 4)) 

input 
signal 

phase 
detectof 
output - I Figure 15.37. Phase detector for linear input 

signal signals. This scheme is used in the monolithic 
AD630. 
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where the brackets represent averages, and 
the minus sign comes from the gain rever- 
sal over alternate half cycles of Vref. As an 
exercise, you can show that 

EXERCISE 15.2 
Perform the indicated averages by explicit inte- 
gration to obtain the preceding result for unity 
gain. 

Our result shows that the averaged out- 
put, for an input signal of the same 
frequency as the reference signal, is pro- 
portional to the amplitude of V, and si- 
nusoidal in the relative phase. 

We need one more result before going 
on: What is the output voltage for an input 
signal whose frequency is close to (but 
not equal to) the reference signal? This 
is easy, since in the preceding equations 
the quantity 4 now varies slowly, at the 
difference frequency: 

cos(w + Aw)t = cos(wt + 4) 
with 4 = tAw 

giving an output signal that is a slow 
sinusoid: 

V,,, = ( ~ E , / T )  sin(Aw)t 

which will pass through the low-pass filter 
relatively unscathed if Aw < 117 = IIRC 
and will be heavily attenuated if Aw > 
117. 

weak 
signal low nolse 

+ noise 

The lock-in method 

Now the so-called lock-in (or phase- 
sensitive) amplifier should make sense. 
First you make a weak signal periodic, as 
we've discussed, typically at a frequency 
in the neighborhood of 100Hz. The weak 
signal, contaminated by noise, is amplified 
and phase-detected relative to the modu- 
lating signal. Look at Figure 15.38. You 
need an experiment with two "knobs" on 
it, one for fast modulation in order to do 
phase detection and one for a slow sweep 
through the interesting features of the sig- 
nal (in NMR, for example, the fast modu- 
lation might be a small 100Hz modulation 
of the magnetic field, and the slow modu- 
lation might be a frequency sweep 10 min- 
utes in duration through the resonance). 
The phase shifter is adjusted to give maxi- 
mum output signal, and the low-pass filter 
is set for a time constant long enough to 
give good signallnoise ratio. The low-pass- 
filter rolloff sets the bandwidth, so a 1Hz 
rolloff, for example, gives you sensitivity to 
spurious signals and noise only within 1 Hz 
of the desired signal. The bandwidth also 
determines how fast you can adjust the 
"slow modulation," since now you must 
not sweep through any features of the sig- 
nal faster than the filter can respond. Peo- 
ple use time constants of fractions of a sec- 
ond up to tens of seconds and often do 
the slow modulation with a geared-down 

low~pass 
fi lter r @ meter 

( -  1 Hz or less) 

chart recorder 
computer 

4 data loaoer 

low freq r -2 
[ - looHz Figure 15.38. Lock-in detection. 
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clock motor turning an actual knob on 
something! 

Note that lock-in detection amounts 
to bandwidth narrowing again, with the 
bandwidth set by the post-detection low- 
pass filter. As with signal averaging, the 
effect of the modulation is to center the 
signal at the fast modulation frequency, 
rather than at dc, in order to get away 
from llf noise (flicker noise, drifts, and 
the like). 

the sought-after signal (line shape versus 
magnetic field, for example, in NMR), as 
sketched in Figure 15.39. In the first case 
the output signal from the phase-sensitive 
detector is proportional to the slope of the 
line shape (i.e., its derivative), whereas in 
the second case it is proportional to the 
line shape itself (providing there aren't any 
other lines out at the other endpoint of the 
modulation waveform). This is the rea- 
son all those simple NMR resonance lines 
come out looking like dispersion curves 
(Fig. 1 5.40). 

ie magnetic field, 5 ----t 
\ 
\ 

small slnuso~dal modulation at - 100Hz. 

r--- 
5- 

large square-wave modulat~on at - 100Hz: I 

Figure 15.39. Lock-in modulation methods. 
A. Small sinusoid. 
B. Large square wave. 

Two methods of "fast modulation" 

There are some ways to do the fast modu- 
lation: The modulation waveform can be 
either a very small sine wave or a very large 
square wave compared with the features of 

i magnetic f~e ld  
I 

I 
I 
I 

amplifier - 
(small 
modulation) 

I I 

Figure 15.40. Line shape differentiation result- 
ing from lock-in detection. 

For large-shift square-wave modulation 
there's a clever method for suppressing 
modulation feedthrough, in cases where 
that is a problem. Figure 15.41 shows the 
modulation waveform. The offsets above 
and below the central value kill the signal, 
causing an onloff modulation of the signal 
at twice the fundamental of the modulating 
waveform. This is a method for use in 
special cases only; don't get carried away 
by the beauty of it all! 

Large-amplitude square-wave modula- 
tion is a favorite with those dealing in in- 
frared astronomy, where the telescope sec- 
ondary mirrors are rocked to switch the 
image back and forth on an infrared source. 
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Figure 15.4 1. Modulation scheme for suppress- 
ing modulation feedthrough. 

It is also popular in radioastronomy, where 
it's called a Dicke switch. 

Commercial lock-in amplifiers have a 
variable-frequency modulating source and 
tracking filter, a switchable time-constant 
post-detection filter, a good low-noise wide- 
dynamic-range amplifier (you wouldn't be 
using lock-in detection if you weren't hav- 
ing noise problems), and a nice linear 
phase detector. They also let you use an 
external source of modulation. There's a 
knob that adjusts the phase shift, so you 
can maximize the detected signal. The 
whole item comes packed in a handsome 
cabinet, with a meter to read output signal. 
Typically these things cost a few thousand 
dollars and are manufactured by compa- 
nies like EG&G Princeton Applied Re- 
search, Ithaco, and Stanford Research Sys- 
tems. Board-level components are made 
by Evans Electronics, among others. 

In order to illustrate the power of lock- 
in detection, we usually set up a small 
demonstration for our students. We use 
a lock-in to modulate a small LED of the 
kind used for panel indicators, with a mod- 
ulation rate of a kilohertz or so. The cur- 
rent is very low, and you can hardly see the 
LED glowing in normal room light. Six 
feet away a phototransistor looks in the 
general direction of the LED, with its out- 
put fed to the lock-in. With the room lights 
out, there's a tiny signal from the pho- 
totransistor at the modulating frequency 
(mixed with plenty of noise), and the lock- 
in easily detects it, using a time constant 
of a few seconds. Then we turn the room 
lights on (fluorescent), at which point the 

signal from the phototransistor becomes 
just a huge messy 120Hz waveform, jump- 
ing in amplitude by 50dB or more. The sit- 
uation looks hopeless on the oscilloscope, 
but the lock-in just sits there, unperturbed, 
calmly detecting the same LED signal at 
the same level. You can check that it's 
really working by sticking your hand in 
between the LED and the detector. It's 
darned impressive. 

15.16 Pulse-height analysis 

A pulse-height analyzer (PHA) is a sim- 
ple extension of the multichannel scaler 
principle, and it is a very important in- 
strument in nuclear and radiation physics. 
The idea is simplicity itself: Pulses with a 
range of amplitudes are input to a peak- 
detector1ADC circuit that converts the rel- 
ative pulse height to a channel address. 
A multichannel scaler then increments the 
contents of the selected address. The re- 
sult is a graph that is a histogram of pulse 
heights. That's all there is to it. 

The enormous utility of pulse-height an- 
alyzers stems from the fact that many de- 
tectors of charged particles, x rays, and 
gamma rays have output pulse sizes pro- 
portional to the energy of the radiation 
detected (e.g., proportional counters, solid- 
state detectors, surface-barrier detectors, 
and scintillators, as we discussed in Sec- 
tion 15.07). Thus a pulse-height analyzer 
converts the detector's output to an energy 
spectrum. 

Pulse-height analyzers used to be de- 
signed as dedicated hardware devices, with 
buckets of ICs and discrete components. 
Nowadays the standard method is to use 
an off-the-shelf microcomputer, preceded 
by a fast pulse-input ADC. That way you 
can build in all sorts of useful computa- 
tional routines, e.g., background subtrac- 
tion, energy calibration and line identifi- 
cation, disk and tape storage, and on-line 
control of the experiment. We have an 
apparatus that scans a proton microbeam 
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over a specimen in a two-dimensional ras- 
ter pattern, detects the emitted x rays, sorts 
them by chemical element, and stores a 
picture of the distribution of each element 
in the sample, all the while letting you 
view the x-ray spectrum and images as the 
picture accumulates. The whole operation 
is handled by a pulse-height analyzer that 
doesn't realize that it's really a computer. 

There is an interesting subtlety involv- 
ing the ADC front end of a pulse-height 
analyzer. It turns out that you can't use 
something like a successive-approximation 
AID converter, in spite of its superior 
speed, because you wouldn't get exact 
equality of channel widths, with the disas- 
trous effect of producing a lumpy baseline 
from a smooth continuum of input radi- 
ation. All PHAs use a so-called Wilkin- 
son converter, a variation on single-slope 
conversion whereby an input pulse charges 
a capacitor, which is then discharged by 
a constant current while a fast counter 
(200MHz is typical) counts up the address. 
This has the disadvantage of giving an an- 
alyzer "dead time" that depends on the 
height of the last pulse, but it gives abso- 
lute equality of channel widths. 

Most pulse-height analyzers provide in- 
puts so that you can use them as multi- 
channel scalers. Why shouldn't they? All 
the electronics are already there. Some big 
names in pulse-height analyzers are Can- 
berra, EG&G, Nuclear Data, and Tracor- 
Northern. 

15.17 Time-to-amplitude converters 

In nuclear physics it is often important to 
know the distribution of decay times of 
some short-lived particle. This turns out 
to be easy to measure, by simply hooking 
a time-to-amplitude converter (TAC) in 
front of a pulse-height analyzer. The TAC 
starts a ramp when it receives a pulse at 
one input and stops it when it receives 
a pulse at a second input, discharging 
the ramp and generating an output pulse 

channel number ( t ~ m e  interval) 
(48.08nslchannel) 

Figure 15.42. Muon lifetime measurement 
from time-interval spectrum (TAC + PHA). 

proportional to the time interval between 
pulses. It is possible to build these things 
with resolution down in the picoseconds. 
Figure 15.42 shows a measurement of 
the muon lifetime made by a student by 
timing the delay between the capture of a 
cosmic-ray muon in a scintillator and its 
subsequent decay. Each event creates a 
flash of light, and a TAC is used to convert 
the intervals into pulses. A cosmic-ray 
muon decayed in this student's apparatus 
once a minute on the average, so he 
accumulated data for 18 days to determine 
a lifetime of 2.198 f 0 . 0 2 ~ s  (accepted 
value is 2.197 134 f 0.00008ps). Note the 
use of log-lin axes to plot data that should 
be an exponential, and the systematic 
shift of n1/2 (counting) error bars. The 
line plotted is the decay according to the 
accepted value, n(t) = no e x p ( - t l r ) .  

SPECTRUM ANALYSIS 
AND FOURIER TRANSFORMS 

15.1 8 Spectrum analyzers 

An instrument of considerable utility, par- 
ticularly in radiofrequency work, is the 
spectrum analyzer. These devices gen- 
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erate an xy oscilloscope display, with y 
representing signal strength (usually loga- 
rithmic, i-e., in decibels), but with x rep- 
resenting frequency. In other words, a 
spectrum analyzer lets you look in the fre- 
quency domain, plotting the amount of in- 
put signal versus its frequency. You can 
think of it as a Fourier decomposition of 
the input waveform (if you know about 
such things), or as the response you would 
get as you tuned the dial of a broadrange 
high-performance (wide dynamic range, 
stable, sensitive) receiver through its fre- 
quency range. This ability can be very 
handy when analyzing modulated signals, 
looking for intermodulation products or 
distortion, analyzing noise and drift, trying 
to make accurate frequency measurements 
on weak signals in the presence of stronger 
signals, and making a host of other mea- 
surements. 

Spectrum analyzers come in two basic 
varieties: swept-tuned and real-time. 
Swept analyzers are the most common va- 
riety, and they work as shown in Figure 
15.43. What you have is basically a su- 
perheterodyne receiver (see Section 13.16), 
with a local oscillator (LO) that can be 
swept by an internally generated ramp 
waveform. As the LO is swept through its 
range of frequencies, different input fre- 
quencies are successively mixed to pass 
through the IF amplifier and filter. For 
example, suppose you have a spectrum 
analyzer with an IF of 200MHz and an LO 

low pass 

that can sweep from 200MHz to 300MHz. 
When the LO is at 210MHz, input sig- 
nals at lOMHz (f the IF filter bandwidth) 
pass through to the detector and produce 
vertical deflection on the scope. Signals 
at 4 10MHz (an "image" frequency) would 
also pass through, which is the reason for 
the low-pass filter at the input. At any 
given time, input frequencies 200MHz 
lower than the LO are detected. 

Real spectrum analyzers allow lots of 
flexibility as to sweep range, center fre- 
quency, filter bandwidth, display scales, 
etc. Typical input frequency ranges go 
from hertz to gigahertz, with selectable 
bandwidths ranging from hertz to mega- 
hertz. A range of lOMHz to 22GHz is pop- 
ular, with resolution bandwidths of lOHz 
to 3MHz. In addition, sophisticated spec- 
trum analyzers have convenience features 
such as absolute amplitude calibration, 
storage of spectra to prevent flicker dur- 
ing sweeping, additional storage for com- 
parison and normalization, and display of 
digital information on the screen. Fancy 
spectrum analyzers let you analyze phase 
versus frequency, generate frequency mark- 
ers, program the operation via the IEEE- 
488 bus, include tracking oscillators (for 
increased dynamic range), make precise 
frequency measurements of features in the 
spectrum, generate tracking noise voltages 
for system stimulus, and even do signal 
averaging (particularly useful for noisy 
signals). 
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Figure 15.43. Swept-LO spectrum analyzer. 
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Note that this sort of swept spectrum 
analyzer looks at only one frequency at a 
time and generates a complete spectrum by 
sweeping in time. This can be a real disad- 
vantage, since you can't look at transient 
events. In addition, when scanning with 
narrow bandwidth, the sweep rate must be 
kept slow. Finally, only a small portion of 
the input signal is being used at any one 
time. 

These disadvantages of swept spectrum 
analysis are remedied in real-time spec- 
trum analyzers. Again, there are several 
approaches. The clumsy method employs 
a set of narrow filters to look at a range of 
frequencies simultaneously. More recently, 
sophisticated analyzers based on digital 
Fourier analysis (in particular, the famous 
Cooley-Tukey fast Fourier transform, FFT 
for short) are becoming popular. These in- 
struments convert the analog input signal 
(after mixing, etc.) to numbers, using a fast 
analogldigital converter. Then a special- 
purpose computer turns the crank on the 
FFT, generating a digital frequency spec- 
trum. Since this method looks at all fre- 
quencies simultaneously, it has excellent 
sensitivity and speed, and it can be used 
for analysis of transients. It is particu- 
larly good for low-frequency signals, where 
swept analyzers are too slow. In addition, 
it can perform correlations between sig- 
nals. Since the data comes out in digital 
form, it is natural to apply the full power 
of signal averaging, a feature available in 
some commercial instruments. 

Note that these digital spectrum analyz- 
ers, being limited by computational speed, 
have much less bandwidth than the ra- 
diofrequency analog types (swept-LO or 
filter-bank). For example, the popular HP 
356 1A goes from 125pHz to 100kHz. You 
can, of course, use it to look at a lOOkHz 
band centered at some higher frequency, 
by translating that band down in frequency 
with heterodyne techniques. 

A clever real-time spectrum analyzer 
can also be constructed using the so-called 

chirp/Z transform. In this method a dis- 
persive filter (delay time proportional to 
frequency) replaces the IF bandpass filter 
in the swept-LO analyzer (Fig. 15.43). By 
matching the LO sweep rate to the filter's 
dispersion, you get an output that superfi- 
cially resembles the swept analyzer output, 
namely a linear scan of frequency versus 
time during each sweep. However, in con- 
trast to the swept-LO analyzer, this scheme 
gathers signals from the entire band of fre- 
quencies continuously. Another interest- 
ing technique for real-time spectral analy- 
sis is the Bragg cell (or "acousto-optic spec- 
trometer"), in which the IF signal is used 
to generate acoustic waves in a transpar- 
ent crystal. These deformations diffract 
a laser beam, generating a real-time dis- 
play of the frequency spectrum as light in- 
tensity versus position. An array of pho- 
todetectors completes the analyzer output. 
Bragg-cell spectrometers are used in radio 
astronomy. A typical unit has 2GHz in- 
stantaneous bandwidth, analyzed into 
16,000 channels of 125kHz bandwidth 
each. When choosing a spectrum analyzer 
type, be sure to consider trade-offs among 
bandwidth, resolution, linearity, and dy- 
namic range. 

Figure 15.44 shows the sort of radiofre- 
quency spectra that endear spectrum ana- 
lyzers to people who earn their living above 
1 MHz. The first four spectra show oscilla- 
tors: A is just a pure sine-wave oscillator, B 
is distorted (as indicated by its harmonics), 
C has noise sidebands, and D has some 
frequency instability (drifting or residual 
FM). You can measure amplifier intermod- 
ulation products, as in E, where second-, 
third-, and fourth-order intermodulation 
frequencies are visible in the output of an 
amplifier driven by a "two-tone" test signal 
consisting of pure sine waves at frequen- 
cies f l  and f 2 .  Finally, in F you can see 
the uncouth behavior of a double-balanced 
mixer; there is feedthrough of both the 
LO and input signal, as well as distortion 
terms FE LO f 2 f s i g ,    LO f Q f s i g ) .  This 
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last spectrum may actually indicate quite 
respectable mixer performance, depending 
on the vertical scale shown. Spectrum an- 
alyzers are designed with enormous dy- 
namic range (internally generated distor- 
tion products are typically down by 70dB 
or more; with a "tracking preselector" 
they're down by 100dB) so that you can 
see the failings of even a very good circuit. 

The last graph G in Figure 15.44 shows 
what happens when you sweep the LO too 
fast in a swept analyzer. If the sweep 
causes a signal to pass through the filter 
bandwidth A f in a time shorter than At x 
l / A f ,  it will be broadened, roughly to 
Af' x llAt. 

For instance, we have used the FFT to 
search for pulsars, perform audio analy- 
sis, enhance the resolution of astronomical 
images (speckle imaging), and look for sig- 
nals from intelligent life in space (SETI). In 
the last experiment, a GaAs FET amplifier 
connected to a receiving dish 84 feet in di- 
ameter drives a heterodyne receiver, with 
400kHz of bandwidth analyzed (in real 
time) into 8 million simultaneous 0.05Hz 
channels. Our digital spectrum analyzer 
has 20,000 ICs and a half million solder 
joints (all done by hand!) and can detect 
narrowband signals 60dB below receiver 
noise in a 20 second integration. This 
corresponds to a radio flux of less than 1 
nanowatt total over the entire earth's disk! 

15.1 9 Off -line spectrum analysis 

The fast Fourier transform applied to dig- SELF-EXPLANATORY CIRCUITS 
itized data from an experiment provides a 
very powerful method of signai analysis, 
particularly the recognition of weak sig- 15.20 Circuit ideas 

nals of well-defined periodicity buried in In Figure 15.45 we've collected some cir- 
interfering signals or noise, or the recog- cuits that are useful in measurement and 
nition of vibrations or oscillatory modes. control applications. 
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Figure 15.44. Spectrum analyzer displays. 
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