
Fourier Series & The Fourier Transform

What is the Fourier Transform?

Anharmonic Waves

Fourier Cosine Series for even 
functions

Fourier Sine Series for odd functions

The continuous limit:  the Fourier 
transform (and its inverse)
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What do we hope to achieve with the
Fourier Transform?
We desire a measure of the frequencies present in a wave.  This will
lead to a definition of the term, the “spectrum.”

Plane waves have only 
one frequency, ω.

This light wave has many 
frequencies.  And the 
frequency increases in 
time (from red to blue).

It will be nice if our measure also tells us when each frequency occurs.
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Lord Kelvin on Fourier’s theorem

Fourier’s theorem is not only one of the most 
beautiful results of modern analysis, but it may 
be said to furnish an indispensable instrument 
in the treatment of nearly every recondite 
question in modern physics.

Lord Kelvin



Joseph Fourier, our hero

Fourier was 
obsessed with the 
physics of heat and 
developed the 
Fourier series and 
transform to model 
heat-flow problems.



Anharmonic waves are sums of sinusoids.

Consider the sum of two sine waves (i.e., harmonic 
waves) of different frequencies:

The resulting wave is periodic, but not harmonic.  
Most waves are anharmonic.



Fourier 
decomposing 
functions

Here, we write a
square wave as 
a sum of sine waves.



Any function can be written as the
sum of an even and an odd function
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Fourier Cosine Series

Because cos(mt) is an even function (for all m), we can write an even 
function, f(t), as:

where the set {Fm; m = 0, 1, … } is a set of coefficients that define the 
series.

And where we’ll only worry about the function f(t) over the interval 
(–π,π).
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The Kronecker delta function
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Finding the coefficients, Fm, in a Fourier Cosine Series

Fourier Cosine Series:

To find Fm, multiply each side by cos(m’t), where m’ is another integer, and integrate:

But:                   

So: only the m’ = m term contributes

Dropping the ‘ from the m: 
yields the 
coefficients for 
any f(t)!
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Fourier Sine Series

Because sin(mt) is an odd function (for all m), we can write 
any odd function, f(t), as:

where the set {F’m; m = 0, 1, … } is a set of coefficients that define 
the series.

where we’ll only worry about the function f(t) over the interval (–π,π).
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Finding the coefficients, F’m, in a Fourier Sine Series

Fourier Sine Series:

To find Fm, multiply each side by sin(m’t), where m’ is another integer, and integrate:

But:                       

So: 
only the m’ = m term contributes

Dropping the ‘ from the m: yields the coefficients 
for any f(t)!
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Fourier Series

even component                     odd component

where

and
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So if f(t) is a general function, neither even nor odd, it can be 
written:



We can plot the coefficients of a Fourier Series

We really need two such plots, one for the cosine series and another 
for the sine series.

Fm vs. m

m

5 25
2015

10
30

1

.5

0



Discrete Fourier Series vs.
Continuous Fourier Transform

Fm vs. m

m

F(m)

Again, we really need two such plots, one for the cosine series and 
another for the sine series.

Let the integer 
m become a 
real number 

and let the 
coefficients, 

Fm, become a 
function F(m).



The Fourier Transform
Consider the Fourier coefficients.  Let’s define a function F(m) that 
incorporates both cosine and sine series coefficients, with the sine 
series distinguished by making it the imaginary component:

Let’s now allow f(t) to range from  –∞ to ∞, so we’ll have to integrate 
from –∞ to ∞, and let’s redefine m to be the “frequency,” which we’ll 
now call ω:

F(ω) is called the Fourier Transform of f(t).  It contains equivalent 
information to that in f(t).  We say that f(t) lives in the “time domain,”
and F(ω) lives in the “frequency domain.” F(ω) is just another way of 
looking at a function or wave.
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The Inverse Fourier Transform
The Fourier Transform takes us from f(t) to F(ω).  
How about going back?

Recall our formula for the Fourier Series of f(t) :

Now transform the sums to integrals from –∞ to ∞, and again replace 
Fm with F(ω).  Remembering the fact that we introduced a factor of i
(and including a factor of 2 that just crops up), we have:
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The Fourier Transform and its Inverse

The Fourier Transform and its Inverse:

So we can transform to the frequency domain and back.  
Interestingly, these functions are very similar.  

There are different definitions of these transforms.  The 2π can 
occur in several places, but the idea is generally the same.

Inverse Fourier Transform
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Fourier Transform Notation

There are several ways to denote the Fourier transform of a 
function.

If the function is labeled by a lower-case letter, such as f, 
we can write:

f(t) → F(ω)

If the function is labeled by an upper-case letter, such as E, we can 
write:

or: ( ) ( )E t E ω→ %( ) { ( )}E t E t→Y

∩Sometimes, this symbol is 
used instead of the arrow:



The Spectrum

We define the spectrum of a wave E(t) to be:

2
{ ( )}E tY

This is our measure of the frequencies present in a light wave.



Example:  the Fourier Transform of a
rectangle function:  rect(t)
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Sinc(x) and why it's important

Sinc(x/2) is the Fourier 
transform of a rectangle 
function.

Sinc2(x/2) is the Fourier 
transform of a triangle 
function.

Sinc2(ax) is the diffraction 
pattern from a slit.

It just crops up 
everywhere...



The Fourier Transform of the triangle
function, Δ(t), is sinc2(ω/2)
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The triangle function is just what it sounds like.  

∩

We’ll prove this when we learn about convolution.

Sometimes 
people use 

Λ(t), too, for 
the triangle 

function.



Example:  the Fourier Transform of a
decaying exponential:  exp(-at)  (t > 0)
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Example:  the Fourier Transform of a
Gaussian, exp(-at2), is itself!
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The details are a HW problem!
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Some functions don’t have Fourier 
transforms.

The condition for the existence of a given F(ω) is:

Functions that do not asymptote to zero in both the +∞ and –∞
directions generally do not have Fourier transforms.

So we’ll assume that all functions of interest go to zero at ±∞.
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Expanding the Fourier transform of a function, f(t):

Expanding further:
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Fourier Transform Symmetry Properties
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Fourier Transform Symmetry Examples I



Fourier Transform Symmetry Examples II
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