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Dark Mater Direct Detection Techniques

thermal freeze-out (early Univ.)

*Three major indirect detection (now)
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Direct Detection

Basic goal: search for nuclear recoil from DM
elastic scattering.
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Simple dynamics. Cross section o (form factor)?

v
Spin-independent: Nucleon form factor gives rise to A®
enhancement due to coherence.

The dependence on g2 is also contained in the form-factors.

Spin-dependent: Form factor depends on nuclear spin. No
coherence enhancement.



Different Direct Detection Methods

» Scintillation light

— Liquid/gas scintillators: Xe, Ar, Ne (noble)

— Solid scintillators: Nal, Csl, CaWO,, LiF,
CaF,

- Tonized electrons can be

collected in an electric field.
— Xe ala LUX (in combination with light)

— Ge ala CDMS (in combination with phonons)

* Lattice vibration (phonons).

— bolometers/calorimeters: Ge, Si, CaWO,

* Recoiling neutrons can boil
superheated liquid. Cameras
and microphones detect
bubbles.

CF,l, CF,Br, C,Fg, C,F4,, C,CIF,

light from

excitation and
scintillation

charge from

lonization

N

bubbles

phonons

heat



Backgr'ound SuEEression

For these experiments the main "noise” is background "signals”. A large
suppression of backgrounds required.

1. Gamma ray induced electron recoils. Discrimination is based on
measuring two characteristic signals from the recoil.

Liquid Xenon Liguid Argon Low temp. Ge Bubble Chamber
Tonization J J J high density
Scintillation J J
Phonons J
| Qther Pulse shape. Pulse shape. Acoustic

2. Neutron induced nuclear recoils. Neutrons need to be eliminated:

*Deep underground deployment
Use of ultra-low radioactivity materials and components
‘Large external shields (water and/or lead)

-Active veto (e.g., gadolinium doped liquid scintillator)

‘Double scatters (DM does not)



Signal Technique
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The LUX detector

Thermosyphon

LN bath column
~ 7m diameter Water Cerenkov Shield.

Radiation shield

Titanium
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Cathode grid

Counterweight

350 kg of Lxe
122 photomultiplier tubes (top plus
bottom)




Assembly completed on ’rhe surface




Detector: By the Numbers

370 kg gross/250 active/118 fiducial Xe inside

48 cm H (gate to cathode) X 47 cm D active region with
181 V/cm drift field

Good purity: 87-134 cm e m.f.p. over course of run
(~500-900 us "lifetime")

6.0 kV/cm extraction field (3.1 in LXe) resulting in 65%
extraction efficiency

200 phe S2 analysis threshold or mean 8 e”'s (~25 phe/e")
avoids few-e” BGs



th Xenon?

Nobel element => Inert. Can be purified via gettering techniques.

No long-lived radio-isotopes. Metastable istopes useful in calibration.

High density (~3g/cm3)
=> Powerful self-shielding.

High A (131) => Large
elastic O
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Recoil Spectra
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range 5 keV < E < 25 keV.

Long electron drift
lengths (few m) => scalable
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wees), —— Scintillation process in LXe

WIMP \ \ -
. e @ @rgy DepOSiﬁD' = = = = P»|Heat (no usable signal)
Heat (phonons) /// lonisation Scintillation (S1) Ionization

(e- and ions) /\
Ionization /' —e' ﬁRecombination (Sl)) C Escape (S2) )

/ +Xe
Recoil
N\, Xe,* Difference in in recombination
Excitation efficiency is exploited to discriminate
\ trecompinationy  0€tween electron and nuclear recoils.
Xe ~@==xe™ + Xe Xenon is transparent to its own
‘ Xe scintillation light !
*_ g o
RS 5y o L Figure of merit derived from plots of:

ipl Singlet
e / 3ns — Log (charge escaping recombination/
2Xe  2Xe UVIhght — total primary light produced)



ER and NR Band Calibrations
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Energy Resolution

Rate [cts/bin/sec]

236 keV (=39.6
+ 196.6 keV)
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nghT Collection

— ® All Non-VUV-reflective
metallic surfaces - Field-
shaping rings, spaces
between PMTs etc -
covered with PTFE

Measurements consistent
with >95% reflectivity

14% efficiency for the
detection of a primary
\ scintillation photon at the

,,_-ff:;, ;v / \ .
“ ¥ - PMTsaffer journey

e C 'y XENONIOO +39 from top and bottom.
pﬁ;n/pka;\? ° : Mapped out with Kr83m

e LUX is >2x better




relative differential rate

relative differential rate

o AmBe neutron calibration S1 data (Ieft?
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Pulse Finding

Calibration data and full
MC simulations used:

® AmBe / Cf-252 (low-E
NR)

® Tritiated methane (ER)

Excellent agreement
used to derive relative
efficiency and
threshold.

Hand-scan estimated
absolute efficiency 98%
cross-checked against
expected number of H-3
iInjection events



All Pulse Finding Efficiencies

3 keVnr (true, not reconstructed)
Sl area~ 2.0 phe 82 area ~ 200 phe

1 ++_¢_ % : Efficiency faIIs at j“_‘
0.9¢ - 4 high energy: due to |
0.8 -+ S1 max (30 phe) .
0.7} ==__ Before any analysis cuts: y

> 0.6 o S1 pulse identification

505 =, S2 pulse identification

£ Simultaneous identification

© 0.4 —+
0.3 e + Including analysis cuts: y
0.2k Efficiency for S1+S2 ID .
01l o (S1>2 phe, S2>200 phe) )
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NR Scintillation Yield

Modeled using NEST and G4
optical model for light
collection

® Extracted energy-dependent
light suppression factors (S,
S,.) for electric field (at
expense of charge via
recombination probability)

® Result is a conservative
approach (~0.8 of light at 181
V/cm compared to O V/cm)

® Conservative, but also
predictive, and matches LUX
datal

yield relative to Co-57 gamma

No need to use 63 photons/
keV Co-57 zero-field (can't
penetrate anyway)
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nuclear recoil energy (keV)
| X 2013
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Aprile 2011<- Xe100 limits NEST:
= Plante 2011 Zero field
----- Horn 2011a ——181 Vicm
----- Horn 2011b
= Manzur 2010

Data taken at non-

zero field is translated by those

reporting the results, assuming reduction of 0.95
(Aprile 2013, 730 V/cm) or 0.9 (Horn 2011,
~4000 V/cm, from ZEPLIN-III). LUX is 181 V/cm.

All other data poin

ts actually taken at zero field.
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NR Tonization Yield

lonisation Yield, Qy(e"s / keV)
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‘ 3.0 keVnr cut-off as with scintillation ]

Sorensen IDM 2010 (2010) - 0.73 kV/cm
Sorensen NIM A601 (2009) - 0.73 kV/cm
Sorensen NIM A601 (2009) - 0.73 kV/cm
Manzur PRC81 (2010) - 1 kV/cm
Manzur PRC81 (2010) - 4 kV/cm
Aprile PRL97 (2006) - 0.1-2 kV/cm
[ ] Horn PLB705 (2011) - FSR
[ ] Horn PLB705 (2011) - SSR

: Aorile PRD88 (2013) <— X FINON 100 g7 30 V]
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Electric Field Dependence
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analysis region ER (above) > 876 V/ecm
for LUX here v 522 Viem [
NEST > 60 V/em
(lines) g 00og000
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Dahl 2009
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The keVnr energy scale shown here is Dahl’s, and assumes an old, flat £ = 0.25: using
Hitachi, the 5 keVnr point is actually 8.67 and the 70 keVnr point is 85.5 (and this correction
has been accounted for in NEST when fitting the data). The keVee scale is still correct

Data presented in
terms of log(n./n.),
converted from
log(S2/S1), but
keVee scale is
(ng+n)*13.7e-3 keV
and so can easily
extract n, and n,
alone and get their
field dependencies

AmBe and Cf-252
sources, not an
angle- ‘ragged neutron
scattering
measurement, but
|mpor"rcmT thing is
*relative* yield is
well-established



Backgrounds

3.1+/- 02 X 19_3 COL{NTS/ (kev' Source Background rate, mDRUee
kg-day) in region of interest y-rays 1.8 £ 0.2s¢at =+ 0.3sys
) 127X e 0.5 £ 0.025tat &= 0.1sys
Averaged over April-August 214p} 0.11-0.22 (90% C.L.)
WIMP search (85.3 live-days) 85Ky 0.13 & 0.075ys
3.5 ppt Kr (measured) Total predicted| 2.6 & 0.25¢at £ 0.45ys
. . Total observed 3.1 & 0.25¢at
Getting better: cosmogenics
from surface run decaying away
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BG (<5 keVee)

Quiet detector with <2 events / day in energy and volume regions of interest,
and it’s getting quieter
Measured DRU (89 Ilvedays 89 eff)  log ,iDRUsa]

118.3 +/- 6.5 kg
3.1+/- 0.2 mdru
(0.5 cosmogenic)
R<18 cm
Z=7-47 cm
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misalignment at
higher energy)

equilibrium AND maintaining
good fit across different positions
at higher & lower E. Location of
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to low-E ER BGs, so overestimate
has no significantleffect.
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Typical Event

1.5 keVee (combined energy reconstruction) ER event

S1 summed across all channels S2 summed across all channels
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ER Leakage below NR Band

10 90%
S (e)
__g 10 99% S
O —
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X | | | | |
3 107 ST :399.9% S
107 ' ' ' i —199.99%
0 5 10 15 20 25 30

S1 x,y,z corrected (phe)

Mean leakage 0.4 +/- 0.1% (2-30 phe S1 region) accepting all NR
events below power law fit to the NR Gaussian mean in slices

Not used directly in our limit calculation, which is a PLR (Profile
Likelihood Ratio) not cut-and-count, but illustrates separation



WIMP Search Result

L F ' ' | ' ]
2.6] A . L
! ) S1 range for analysis [2-30] phe is in energy 3 - ~25 keVnr.
R Lower end is lowest ever for Xe detector. LUX still has ~80%
2-4‘| \ S1 finding there, confirmed with different data sets, methods 7
o +\\ Total number of events: only 160 in 85.3 live-days X 118 kg
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Summary of Events Post-Cuts

Cut Explanation Events Remaining
All Triggers S2 Trigger >99% for S2:aw>200 phe 83,673,413
o Cut periods of excursion for Xe Gas Pressure, Xe

Detector Stability Liquid Level, Grid Voltages 82,918,901

Single Scatter Events dentification of S1 and S2. Single Scatter cut. 6,585,686
Accept 2-30 phe

S1 energy (energy ~ 0.9-5.3 keVee, ~3-18 keV/nr) 26,824
Accept 200-3300 phe (>8 extracted electrons)

S2 energy Removes single electron / small S2 edge events 20,989

- : Cut if >100 phe outside S1+S2 identified
S2 Smgle Electron Quiet Cut +/-0.5 ms around trigger (0.8% drop in livetime) 19,796
ey T : Cutting away from cathode and gate regions,
Drift Time Cut away from grids | g < gt time < 304 us 8731
Fiducial Volume radius and drift cut | aous < 19 cm, 38 < drit time < 305 us, 160

118 kg fiducial




WIMP Dark Matter Limit
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Low-Mass WIMP Region

WIMP-nucleon cross section (cm2)

DMS || Ge
DAMA/LIBRA Favored

Fo-hear-same
e NR light
LUX (20183) yield df lower S1
threshold2 vs. 3 phe) and higher
light collection-efficiency

XENONH00 (2012)

6 7 8 9 210 12
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Summary

* LUX has the largest kg-days exposure of any xenon TPC,
as well as the lowest energy threshold

» Pioneering work with internal calibration sources. Helps
identify and suppress backgrounds.

+ Low-energy NR data agree with MC, with location of
band at LUX field (predicted for the first time)

* Currently have the most stringent limit on the WIMP-
nucleon spin-independent interaction cross-section
across a wide range of WIMP masses

« Our result is in conflict with low-mass WIMP

interpretations of signals seen in CoGeNT, CDMS, and
elsewhere



