Lecture 18

Other Detectors

Far Infrared detectors
Bolometers, SQIDs
Search for Laboratory dark matter



Types of detectors

Anelectrical signal can be formed directly by ionization or photo-conversion.
Incident radiation quanta impart sufficient energy to individual atomic electrons to
form electron-ion pairs (in gases) or electron-hole pairs (in semiconductors and
metals).

Other detection mechanisms are:

Excitation of optical states (scintillators)
Excitation of lattice vibrations (phonons)

Breakup of Cooper pairs in superconductors
Formation of superheated droplets in superfluid He

Typical excitation energies:

Tonizationin gases ~30 eV
Photo-conversionin semiconductors1-5eV
Scintillation~10 eV

Phonons meV

Breakup of Cooper Pairs meV



Other types of detectors: bolometers

hel s N
Assume thermal equilibrium: If all absorbed energy J G(T)
E is converted into phonons, the temperature of N s
o s 0
the sample will increase by N
N
/ T — E
Al = C Temperature Absorber
' Sensor C(T)
where C the heat capacity of the sample (specific heat x mass).
At room temperature the specific heat of Siis 0.7 J/igK, so
E=1keV,m=1g = AT=210"°K,
which isn’t practical.
What can be done?
a) reduce mass Example:
b) lower temperature to reduce heat capacity _
Lo m=15 g
freeze out” any electron contribution, so
phonon excitation dominates. T=01K
Si = (=410 JK

o3
Debye model of heat capacity: € | %: E=1keV = AT=0.04K
L@/



How do we measure the temperature rise?

One idea: couple thermistor to silicon
and measure the resistance change:

Better idea: Utilize abrupt change in
resistance in transition from
superconducting to normal state:

At sufficiently low temperatures the
electronic contribution to the heat
capacity is negligible: C « exp(-T./T)

Important constraint:

thermistor

o

Thermistors made of very pure semiconductors (Ge, Si) can
exhibit responsivities of order 1 V/K, so a 40 mK change in
temperature would yield a signal of 40 mV.
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Since sensor resistance of order 0.1 — 1 Q, the total external resistance (internal

resistance of voltage source and input resistance of current measuring device) must
be much smaller to maintain voltage-biased operation, i.e. <0.01 -0.1 Q!

Difficult to achieve at relevant frequencies.



Pseudo-optical systems
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Superconducting niobium bolometer system

This Nb superconducting hot-
electron bolometer is capable of
responding to a very broad
range of wavelengths. Shown
here is a system with a single
superconducting Nb hot electron
bolometer, with Winston cone
coupling optics, control
thermometry and bias circuit,
quasi-optical filters and a
wideband noise-matched
preamplifier. This detector has
good sensitivity throughout the
mm and IR with a one
nanosecond response time.
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System Optical NEP: < 100 pW.Hz-1/2 measured at 300 GHz
(100 kHz modulation.)

Bandwidth: > 200 MHz (1 =1 x 10-9 second.)

Operating Temperature: 4.2K or below.

Wavelength range: > 150 microns (< 2 THz.)

Coupling Optics: 15 mm diameter at /3.



Superconducting Bolometer Array

ACBAR (Caltech)




TES versus STJ Comparison

TES

AEpym =2355 4k, T2 Cf2a

n=35 electron - phonon coupling
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Sensor Current Change [peA ]
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* Demonstration of W TES sensitivity
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Application of TES to optical astronomy

Simultaneous photon timing and spectroscopy of Crab pulsar

Background Subtracted Crab Pulsar

Photon energ
histogram

Phase timing
histogram




Cryogenic detectors

Quantum limited: photon noise in IR background is
(NEP)? = 2P hv, where P = incident power

O Sensitivity approaching quantum level at mm wavelengths
O Voltage-biased superconducting transition edge sensors

Stable operation + predictable response

0 Sensors can be fabricated using monolithic technology developed for Si
integrated circuits, micro-mechanics (MEMS)

Economical fabrication of large sensor arrays
0 Open question: Readout (multiplexing of many channels)

Appears feasible, but much work to do

Critical for CMB Polarization SZ Cluster Search Next Generation WIMP detectors



TES array
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Dark Matter as Weakly Interacting Massive Particles (VWIMPs)
* Cross-sections of order of weak scale give good estimate

of current relic density
* Independently, SUSY predicts a massive, weakly

interacting particle

Grlepsing 7. "




Natural WIMP candidate

= Neutralino definition in the SUSY
field

= Stable particle if R-parity
conserved (LSP)

= |Indirect detection : = Direct detection :
Detection of WIMPs annihilation Detection of WIMPs scatterlng off

products nuclei

SUPER K




Direct Search Principle

Detection of the energy deposit due to elastic scattering on nuclei of detector
in laboratory experiment

O WIMP

|
WIMP Nucleus ‘ _
From galactic halo in laboratory . .
: Elastic WIMP ‘
H ]
scattering | v
{v - 250 km/s) (v =0 km/s) Nucleus Brecor

E(recoil) ~ 20 keV
Optlmum SenSitiVity for Mwive ~ MrecolL
Rate < 1 evt/day/kg of detector
— Needlow background
» Deepundergroundsites
» Radio-purityof components
» Active/passive shielding
— Needlargedetector mass (kg ->ton)

Recoil energy ~ 20 keV

— Needlowrecoil energythreshold



WIMPS

Sufficiently massive that they could account for the missing mass.

Rarely interacting with ordinary matter (which is why they have not been
observed yet).

Supersymmetry offers a natural WIMP candidate:

— For every particle, there Is a super-partner particle with spin different
by ~.

— The lightest super-partner (LSP) stable and weakly interacting with
ordinary matter = natural WIMP candidate!

— In most cases, the LSP is a neutralino - a superposition of
superpartners of B, W, and two neutral, parity even Higgs fields.

X? = Ny f}' + N -_3"‘{”.'5 + h‘r]:{f}? + N4 ,ﬁ? """""""



Search for dark matter particles

Berkeley Large lonization-
and Phonon-mediated Detectors
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O nuclear-recoil candidate in both detectors
[nuclear-recoil candidate in one detector

lonization Yield [keV/keV]
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 Requirethat at least one hit
bein fiducial volume

Inner-
electrode

Shared-
electrode

 Observe 4 neutron multiple
scattersin 10-100 keV
multiple events

e Calibrationindicates
negligible contamination by
electron multiples



90% CL upper limits assuming standard
halo, & scaling
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Expected ;
CDMS DAMANal/1-4
4, | sensitivity 3o region
105 N 2 3
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WIMP Mass [GeV/c’]

CDMS results consistent
with all observed ‘WIMP’
events being neutrons.

CDMS provided the most
constraining upper limit of
any experiment for WIMPs
with 10-70 GeV mass in
2001.

Expected sensitivity is for
the expected case of 27
neutron events in Ge, and a
background in Si of 7.2
electrons and 4.6 neutrons.



Better: transition edge detectors

— TES's patterned on the surface measurethe full recoil energy of the
Interaction

— Phononpulseshapeallows forrejection of surfacerecoils (with suppressed
charge)

— 4phononchannelsallow for event position reconstruction

1= N\ 60 um wide
¢

surface

2 ym wide
W transition
edge senor

25% QP collection eff.

W - Al
overlap




quasiparticle

trap
Al Collector quasiparticle - .tW Ed
diffusion o ransition-Edge
. (&®)) Sensor

- OAHD

W Transition-Edge Sensor:
a really good thermometer

4 ~ 10mK
Measurement of athermal phonon JF

signals maximizes information a
o
&
Fast pulse, excellent energy and u

timing resolution I _?)

superconducting




Yield plots for background data
—Muon Coincident Data

Yield
1.-4--|

—Gamma background band is the dominant feature

—Muon coincident neutrons populate the nuclear recoil band
—A number of ‘in between’ events

plots for Muon Coincident Low Background D
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Background: Multiple neutron scatters

Non-
neighbor

double-
scatter

Triple-
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Anatomy of penetrating neutron multiple scatter gvent

(V)Higherenergy (30 MeV)
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Current and Projected CDMS

Current CDMS SUF R19 Limit

Projected CDMS SUF Limit

Projected CDMS Soudan Limit:
x 100 than present limit at SUF
(0.01 events/kg/keV/day).

Increase detector mass by 10.

*Go deep, Cosmics down by 1000.
‘Gamma leakage down by 2. (0.k.)
*Beta contamination down by 20. (?)
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CDMS ITI Experimental Enclosure

DAQ/Electronics

AN

RF-shielded =
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n

| Mezzanine | Mezzanine
Front-end
. . Elect i
Mechanical Shield [-—="| | Detector Prep

Minos entrance

I
Pumps, ﬂ Clean Benches
(]

Cryogenics Fridge Icebox | | | |




Log,o(Muon Flux) (m?s)

CDMS ITI at Soudan mine

Depth of 2000 mwe reduces neutron background from
~1/kg /day to~1/kg/year

Muon-veto paddles encasing outer

lead and polyethylene shielding Dilution
rface
. Sltjanford Underground 500 Hz muons Refrigerator
Facility in 4 m? shield
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Today’s Dark Matter Landscape
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Xenon Signal

| Two signals:
Electron Recoil S1 S2
R s

f’ QL eeee

|75 nm photons  Electrons

Electron Recoil
(gammas)

3.9

Nuclear Recoil
(neutrons, WIMPs)

log 1 0(82!81 )

NUCIear ReCOiI I, | ,: Cs(igar;f;rr;as.olu.rce) -

S| - AmBe (neutron source)
0 5 10 15 20 25 30

electron recoil energy (keV)

The LUX Experiment, May 27 2010 Carlos Hernandez Faham, Brown University
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The LUX Experiment, May 27 2010 Carlos Hernandez Faham, Brown University
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The LUX Experiment, May 27 2010

Carlos Hernandez Faham, Brown University



top hit pattern:
x-y localization

S 2 At: z localization
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The LUX Experiment, May 27 2010 Carlos Hernandez Faham, Brown University



The LUX Experiment

Thermosyphon

Titanium Vessels

PMT Holder Copper Plates

Dodecagonal field cage
+ PTFE reflector panels

* 350 kg LXe detector
* 122 PMTs (2” round)
* Low-background Ti cryostat
* PTFE reflector cage

 Thermosyphon used for cooling (>1 kW) Photzon';'j?;{iz'?t%b';sgan)

The LUX Experiment, May 27 2010 Carlos Hernandez Faham, Brown University
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