

### **Other Detectors**

Far Infrared detectors Bolometers, SQIDs Search for Laboratory dark matter

# Types of detectors

An electrical signal can be formed directly by ionization or photo-conversion. Incident radiation quanta impart sufficient energy to individual atomic electrons to form electron-ion pairs (in gases) or electron-hole pairs (in semiconductors and metals).

Other detection mechanisms are:

Excitation of optical states (scintillators) Excitation of lattice vibrations (phonons) Breakup of Cooper pairs in superconductors Formation of superheated droplets in superfluid He

Typical excitation energies:

Ionization in gases ~30 eV Photo-conversion in semiconductors 1 - 5 eV Scintillation ~10 eV Phonons meV Breakup of Cooper Pairs meV

# Other types of detectors: bolometers

Assume thermal equilibrium: If all absorbed energy E is converted into phonons, the temperature of the sample will increase by

$$\Delta T = \frac{E}{C}$$

where C the heat capacity of the sample (specific heat x mass).

At room temperature the specific heat of Si is 0.7 J/gK, so

 $E= 1 \text{ keV}, m= 1 \text{ g} \implies \Delta T= 2.10^{-16} \text{ K},$ 

which isn't practical.

#### What can be done?

- a) reduce mass
- b) lower temperature to reduce heat capacity "freeze out" any electron contribution, so phonon excitation dominates.

$$C \propto \left(\frac{T}{\Theta}\right)^3$$



 $C = 4.10^{-15} \text{ J/K}$ 

 $\Lambda T = 0.04 \text{ K}$ 

| Example | 2: |
|---------|----|
|---------|----|

m= 15 μg

 $T = 0.1 \, \text{K}$ 

E=1 keV

Si

#### How do we measure the temperature rise?

One idea: couple thermistor to silicon and measure the resistance change:



Thermistors made of very pure semiconductors (Ge, Si) can exhibit responsivities of order 1 V/K, so a 40 mK change in temperature would yield a signal of 40 mV.

Better idea: Utilize abrupt change in resistance in transition from superconducting to normal state:

At sufficiently low temperatures the electronic contribution to the heat capacity is negligible:  $C \propto \exp(-T_c/T)$ 



Important constraint:

Since sensor resistance of order  $0.1 - 1 \Omega$ , the total external resistance (internal resistance of voltage source and input resistance of current measuring device) must be much smaller to maintain voltage-biased operation, i.e. <  $0.01 - 0.1 \Omega$ ! Difficult to achieve at relevant frequencies.

#### Pseudo-optical systems



Field of view = 2 
$$\Theta = 2 \tan^{-1} \left( \frac{a}{f'} \right) = 2 \tan^{-1} \left( \frac{a}{F'D} \right) \approx \frac{2a}{F'D}$$
,

**F-number** = F'



#### Superconducting niobium bolometer system

This Nb superconducting hotelectron bolometer is capable of responding to a very broad range of wavelengths. Shown here is a system with a single superconducting Nb hot electron bolometer, with Winston cone coupling optics, control thermometry and bias circuit, quasi-optical filters and a wideband noise-matched preamplifier. This detector has good sensitivity throughout the mm and IR with a one nanosecond response time.



System Optical NEP: < 100 pW.Hz-1/2 measured at 300 GHz (100 kHz modulation.) Bandwidth: > 200 MHz ( $\tau$  = 1 x 10-9 second.) Operating Temperature: 4.2K or below. Wavelength range: > 150 microns (< 2 THz.) Coupling Optics: 15 mm diameter at f/3.

#### **Superconducting Bolometer Array**

#### **ACBAR (Caltech)**







#### **TES versus STJ Comparison**



$$\Delta E_{FWHM} = 2.355 \sqrt{4 k_B T_e^2 C \sqrt{\frac{n}{2}} / \alpha}$$

n = 5 electron - phonon coupling  $T_e \approx T_c$  $E_{sat} \approx T_c C/\alpha$ 

STJ & 
$$L_K$$

$$\Delta E_{FWHM} \approx 2.355 \sqrt{E \varepsilon_0 (F+G)}$$

 $\varepsilon_0 \approx 1.7 \Delta \approx 1.7 (1.76 k T_c) = 3 k T_c$   $F \approx 0.2$  is the Fano factor  $G \approx 1 - 2$  (tunneling noise)

$$\Delta E_{FWHM} = 2.355 \sqrt{6.4 k_B T_c E_{sat}}$$

$$\Delta E_{FWHM} \approx 2.355 \sqrt{3.6 k T_c E}$$

$$\Delta E_{FWHM} \approx 15 \text{ meV} \left(\frac{E_{sat}}{1 \text{ eV}}\right)^{1/2} \left(\frac{T_c}{70 \text{ mK}}\right)^{1/2}$$

$$\Delta E_{FWHM} \approx 45 \text{ meV} \left(\frac{E}{1 \text{ eV}}\right)^{1/2} \left(\frac{T_c}{1 \text{ K}}\right)^{1/2}$$

#### Demonstration of W TES sensitivity





Appl. Phys. Lett. 73, 735 (1998) B. Cabrera, R. Romani, A. J. Miller E. Figueroa-Feliciano, S. W. Nam

### Application of TES to optical astronomy

#### Simultaneous photon timing and spectroscopy of Crab pulsar



## Cryogenic detectors

Quantum limited:

photon noise in IR background is  $(NEP)^2 = 2P h_V$ , where P = incident power

□ Sensitivity approaching quantum level at mm wavelengths

□ Voltage-biased superconducting transition edge sensors

Stable operation + predictable response

□ Sensors can be fabricated using monolithic technology developed for Si integrated circuits, micro-mechanics (MEMS)

Economical fabrication of large sensor arrays

Open question: Readout (multiplexing of many channels)
 Appears feasible, but much work to do

Critical for CMB Polarization SZ Cluster Search Next Generation WIMP detectors



#### DARK MATTER



#### Dark Matter as Weakly Interacting Massive Particles (WIMPs)

- Cross-sections of order of weak scale give good estimate of current relic density
- Independently, SUSY predicts a massive, weakly interacting particle



### Natural WIMP candidate

- Indirect detection :
  - Detection of WIMPs annihilation products



- Neutralino definition in the SUSY field
- Stable particle if R-parity conserved (LSP)
- Direct detection :
  - Detection of WIMPs scattering off nuclei

E D F I M

ZEPLIN

### **Direct Search Principle**

• Detection of the energy deposit due to elastic scattering on nuclei of detector in laboratory experiment



- Optimum sensitivity for M<sub>WIMP</sub> ~ M<sub>RECOIL</sub>
- Rate < 1 evt/day/kg of detector</li>
  - Need low background
    - » Deep underground sites
    - » Radio-purity of components
    - » Active/passive shielding
  - Need large detector mass (kg -> ton)
- Recoil energy ~ 20 keV
  - Need low recoil energy threshold

# WIMPS

- Sufficiently massive that they could account for the missing mass.
- Rarely interacting with ordinary matter (which is why they have not been observed yet).
- Supersymmetry offers a natural WIMP candidate:
  - For every particle, there is a super-partner particle with spin different by ½.
  - The lightest super-partner (LSP) stable and weakly interacting with ordinary matter ⇒ natural WIMP candidate!
  - In most cases, the LSP is a neutralino a superposition of superpartners of B, W, and two neutral, parity even Higgs fields.

$$\chi_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}_3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$



# Search for dark matter particles



- Four 165 g Ge detectors, for total mass of 0.66 kg during 1999 Run
- Calorimetric measurement of total energy
- Energy resolution: sub-keVFWHMin phonons and ionization





• Require that at least one hit be in fiducial volume



- Observe 4 neutron multiple scatters in 10-100 keV multiple events
- Calibration indicates negligible contamination by electron multiples

90% CL upper limits assuming standard halo, A scaling

![](_page_18_Figure_1.jpeg)

- CDMS results consistent with all observed 'WIMP' events being neutrons.
- CDMS provided the most constraining upper limit of any experiment for WIMPs with 10-70 GeV mass in 2001.
- Expected sensitivity is for the expected case of 27 neutron events in Ge, and a background in Si of 7.2 electrons and 4.6 neutrons.

# Better: transition edge detectors

- TES's patterned on the surface measure the full recoil energy of the interaction
- Phonon pulse shape allows for rejection of surface recoils (with suppressed charge)
  - 4 phonon channels allow for event position reconstruction

![](_page_19_Figure_4.jpeg)

![](_page_20_Figure_0.jpeg)

#### Yield plots for background data

#### -Muon Coincident Data

-Gamma background band is the dominant feature

-Muon coincident neutrons populate the nuclear recoil band

-A number of 'in between' events

![](_page_21_Figure_5.jpeg)

#### Background: Multiple neutron scatters

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

### Current and Projected CDMS Limits

Current CDMS SUF R19 Limit

Projected CDMS SUF Limit

Projected CDMS Soudan Limit: x 100 than present limit at SUF (0.01 events/kg/keV/day).

Increase detector mass by 10.
Go deep, Cosmics down by 1000.
Gamma leakage down by 2. (o.k.)
Beta contamination down by 20. (?)

![](_page_24_Figure_5.jpeg)

# CDMS II Experimental Enclosure

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

## CDMS II at Soudan mine

# Depth of 2000 mwe reduces neutron background from ~1 / kg / day to ~1 / kg / year

![](_page_26_Figure_2.jpeg)

### Today's Dark Matter Landscape

![](_page_27_Figure_1.jpeg)

#### Xenon Signal

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

#### The LUX Experiment

![](_page_32_Picture_1.jpeg)

- 350 kg LXe detector
- 122 PMTs (2" round)
- Low-background Ti cryostat
- PTFE reflector cage
- Thermosyphon used for cooling (>I kW)

![](_page_32_Picture_7.jpeg)

2" Hamamatsu R8778 Photomultiplier Tubes (PMTs)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_36_Picture_0.jpeg)