Chapter 4

Statistical Analysis of Random
Uncertainties

We have seen that one of the best ways to assess the reliability of a measurement
is to repeat it several times and examine the different values obtained. In this chapter
and Chapter 5, I describe statistical methods for analyzing measurements in this
way.

As noted before, not all types of experimental uncertainty can be assessed by
statistical analysis based on repeated measurements. For this reason, uncertainties
are classified into two groups: the random uncertainties, which can be treated statis-
tically, and the systematic uncertainties, which cannot. This distinction is described
in Section 4.1. Most of the remainder of this chapter is devoted to random uncertain-
ties. Section 4.2 introduces, without formal justification, two important definitions

related to a series of measured values Xps ooy Xy, all of some single quantity x.
First, I define the average or mean ¥ of Xy, ..., Xy. Under suitable conditions, ¥ is
the best estimate of x based on the measured values Xp, ..., Xy. | then define the
standard deviation of x,, . . ., x,, which is denoted o, and characterizes the average
uncertainty in the separate measured values X5 ...y Xy Section 4.3 gives an exam-

ple of the use of the standard deviation.

Section 4.4 introduces the important notion of the standard deviation of the
mean. This parameter is denoted o~ and characterizes the uncertainty in the mean ¥
as the best estimate for x. Section 4.5 gives examples of the standard deviation of
the mean. Finally, in Section 4.6, I return to the vexing problem of systematic errors.

Nowhere in this chapter do | attempt a complete justification of the methods
described. The main aim is to introduce the basic formulas and describe how they
are used. In Chapter 5, I give proper justifications, based on the important idea of
the normal distribution curve.

The relation of the material of this chapter (statistical analysis) to the material
of Chapter 3 (error propagation) deserves mention. From 2 practical point of view,
these two topics can be viewed as separate, though related, branches of error analy-
sis (somewhat as algebra and geometry are separate, though related, branches of
mathematics). Both topics need to be mastered, because most experiments require
the use of both.

In a few kinds of experiments, the roles of error propagation and of statistical
analysis are complementary. That is, the experiment can be analyzed using either
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error propagation or statistical methods. Consider an example: Suppose you decide
to measure the acceleration of gravity, g, by measuring the period, 7, and the length,
I, of a simple pendulum. Since 7 = 2rn+///g, you can find g as g = 4n’l/T*. You
might decide to repeat this experiment using several different values of / and mea-
suring the corresponding period 7 for each. In this way, you would arrive at several
values for g. To find the uncertainty in these values of g, you could proceed in
cither of two ways. If you can estimate realistically the uncertainties in your mea-
surements of 7 and 7, you could propagate these uncertainties to find the uncertaint-
ies in your values of g. Alternatively, given your several values of g, you could
analyze them statistically; in particular, their standard deviation will be a good mea-
sure of their uncertainty. Unfortunately, you do not truly have a choice of how to
find the uncertainty. If the uncertainty can be found in these two ways, you really
ought to do so both ways to check that they do give, at least approximately, the
Same answer.

4.1 Random and Systematic Errors

Experimental uncertainties that can be revealed by repeating the measurements are
called random crrors; those that cannot be revealed in this way are called systematic.
To illustrate this distinction, let us consider some examples. Suppose first that we
time a revolution of a steadily rotating turntable. One source of error will be our
reaction time in starting and stopping the watch. If our reaction time were always
exactly the same, these two delays would cancel one another. In practice, however,
our reaction time will vary. We may delay more in starting, and so underestimate
the time of a revolution; or we may delay more in stopping, and so overestimate
the time. Since either possibility is equally likely, the sign of the effect is random.
If we repeat the measurement several times, we will sometimes overestimate and
sometimes underestimate. Thus, our variable reaction time will show up as a varia-
tion of the answers found. By analyzing the spread in results statistically, we can
get a very reliable estimate of this kind of error.

On the other hand, if our stopwatch is running consistently slow, then all our
times will be underestimates, and no amount of repetition (with the same watch)
will reveal this source of error. This kind of error is called systematic, because it
always pushes our result in the same direction. (If the watch runs slow, we always
underestimate; if the watch runs fast, we always overestimate.) Systematic errors
cannot be discovered by the kind of statistical analysis contemplated here.

As a second example of random versus systematic errors, suppose we have to
measure some well-defined length with a ruler. One source of uncertainty will be
the need to interpolate between scale markings; and this uncertainty is probably
random. (When interpolating, we are probably just as likely to overestimate as to
underestimate.) But there is also the possibility that our ruler has become distorted;
and this source of uncertainty would probably be systematic. (If the ruler has
stretched, we always underestimate; if it has shrunk, we always overestimate.)

Just as in these two examples, almost all measurements are subject to both
random and systematic uncertainties. You should have no difficulty finding more
examples. In particular, notice that common sources of random uncertainties are



Section 4.1 Random and Systematic Errors

Random: small Random: small
Systematic: small Systematic: large
(a) (b)

Random: large Random: large
Systematic: small Systematic: large
(c) (d)

Figure 4.1. Random and systematic errors in target practice. (a) Because all shots arrived close
to one another, we can tell the random errors are small. Because the distribution of shots is cen-
tered on the center of the target, the systematic errors are also small. (b) The random errors are
still small, but the systematic ones are much larger—the shots are “systematically” off-center to-
ward the right. (¢) Here, the random errors are large, but the systematic ones are small—the
shots are widely scattered but not systematically off-center. (d) Here, both random and system-
atic errors are large.

small errors of judgment by the observer (as when interpolating), small disturbances
of the apparatus (such as mechanical vibrations), problems of definition, and several

others. Perhaps the most obvious cause of systematic error is the miscalibration of

instruments, such as the watch that runs slow, the ruler that has been stretched, or a
meter that is improperly zeroed.

To get a better feel for the difference between random and systematic errors,
consider the analogy shown in Figure 4.1. Here the “experiment” is a series of shots
fired at a target; accurate “measurements” are shots that arrive close to the center.
Random errors are caused by anything that makes the shots arrive at randomly
different points. For example, the marksman may have an unsteady hand, or fluctu-
ating atmospheric conditions between the marksman and the target may distort the
view of the target in a random way. Systematic errors arise if anything makes the
shots arrive off-center in one “systematic” direction, for instance, if the gun’s sights
are misaligned. Note from Figure 4.1 how the results change according to the vari-
ous combinations of small or large random or systematic errors.

Although Figure 4.1 is an excellent illustration of the effects of random and
systematic errors, it is, nonetheless, misleading in one important respect. Because
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Random: small Random: small

Systematic: ? Systematic: ?
(a) (b)

Random: large Random: large

Systematic: ? Systematic: ?
(¢) (d)

Figure 4.2. The same experiment as in Figure 4.1 redrawn without showing the position of the
target. This situation corresponds closely to the one in most real experiments, in which we do

not know the true value of the quantity being measured. Here, we can still assess the random er-
rors casily but cannot tell anything about the systematic ones. ’

cach of the four pictures shows the position of the target, we can tell at a glance
whether a particular shot was accurate or not. In particular, the difference between
the top two pictures is immediately evident. The shots in the left picture cluster
around the target’s center, whereas those in the right picture cluster around a point
well off-center; clearly, therefore, the marksman responsible for the left picture had
little systematic error, but the one responsible for the right picture had a lot more.
Knowing the position of the target in Figure 4.1 corresponds, in a laboratory mea-
surement, to knowing the true value of the measured quantity, and in the vast major-
ity of real measurements, we do not know this true value. (If we knew the true
value, we would usually not bother to measure it.)

To improve the analogy of Figure 4.1 with most real experiments, we need to
redraw it without the rings that show the position of the target, as in Figure 4.2. In
these pictures, identifying the random errors is still easy. (The top two pictures still
obviously have smaller random errors than the bottom two.) Determining which
marksman had larger systematic errors, however, is impossible based on Figure 4.2.
This situation is exactly what prevails in most real experiments; by examining the
distribution of measured values, we can easily assess the random errors but get no
guidance concerning the systematic errors.



Section 4.2 The Mean and Standard Deviation

The distinction between random and systematic errors is not always clear-cut,
and a problem that causes random errors in one experiment may produce systematic
errors in another. For example, if you position your head first to one side and then
to another to read a typical meter (such as an ordinary clock), the reading on the
meter changes. This effect, called parallax, means that a meter can be read correctly
only if you position yourself directly in front of it. No matter how careful you are,
you cannot always position your eye exactly in front of the meter; consequently,
your measurements will have a small uncertainty due to parallax, and this uncer-
tainty will probably be random. On the other hand, a careless experimenter who
places a meter to one side of his seat and forgets to worry about parallax will
introduce a systematic error into all his readings. Thus, the same effect, parallax, can
produce random uncertainties in one case, and systematic uncertainties in another.

The treatment of random errors is different from that of systematic errors. The
statistical methods described in the following sections give a reliable estimate of the
random uncertainties, and, as we shall see, provide a well-defined procedure for
reducing them. For the reasons just discussed, systematic uncertainties are usually
hard to evaluate and even to detect. The experienced scientist has to learn to antici-
pate the possible sources of systematic error and to make sure that all systematic
errors are much less than the required precision. Doing so will involve, for example,
checking the meters against accepted standards and correcting them or buying better
ones if necessary. Unfortunately, in the first-year physics laboratory, such checks are
rarely possible, so the treatment of systematic errors is often awkward. This concept
is discussed further in Section 4.6. For now, 1 will discuss experiments in which all
sources of systematic error have been identified and made much smaller than the
required precision.

472 The Mean and Standard Deviation

Suppose we need to measure some quantity x, and we have identified all sources of
systematic error and reduced them to a negligible level. Because all remaining
sources of uncertainty are random, we should be able to detect them by repeating
the measurement several times. We might, for example, make the measurement five
times and find the results

71, 72, 72, 73, 71 (4.1)

(where, for convenience, we have omitted any units).

The first question we address is this: Given the five measured values (4.1), what
should we take for our best estimate x,. of the quantity x? Reasonably, our best
estimate would seem to be the average or mean x of the five values found, and in
Chapter 5, 1 will prove that this choice is normally best. Thus,

=X
L4+ 72 +T2 4 73 + 7]
S

= 71.8. (4.2)

xlu:.xl
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Here, the second line is simply the definition of the mean ¥ for the numbers at
hand.'
More generally, suppose we make N measurements of the quantity x (all using
the same equipment and procedures) and find the N values
Xijs Xisr e sy, (4.3)
Once again, the best estimate for x is usually the average of x,, . . ., xy. That is,
Xbest = x’ (44}

where

x, (45)

In the last line, I have introduced the useful sigma notation, according to which

N
E.\:,— = Ex,- = E.r,- =: X1 F Ko F v X

i=1 i

the second and third expressions here are common abbreviations, which T will use
when there is no danger of confusion.

The concept of the average or mean is almost certainly familiar to most readers.
Our next concept, that of the standard deviation, is probably less so. The standard
deviation of the measurements x, . .., xy is an estimate of the average uncertainty
of the measurements x,, . . ., xy and is determined as follows.

Given that the mean X is our best estimate of the quantity x, it is natural to
consider the difference x; — X = d,. This difference, often called the deviation (or
residual) of x; from X, tells us how much the i measurement x; differs from the
average x. If the deviations d; = x; — X are all very small, our measurements are all
close together and presumably very precise. If some of the deviations are large, our
measurements are obviously not so precise.

To be sure you understand the idea of the deviation, let us calculate the devia-
tions for the set of five measurements reported in (4.1). These deviations can be
listed as shown in Table 4.1. Notice that the deviations are not (of course) all the
same size; d; is small if the ith measurement x; happens to be close to X, but d, is
large if x; is far from X. Notice also that some of the d; are positive and some
negative because some of the x; are bound to be higher than the average ¥, and
some are bound to be lower.

To estimate the average reliability of the measurements x, ..., x5, we might
naturally try averaging the deviations d,. Unfortunately, as a glance at Table 4.1
shows, the average of the deviations is zero. In fact, this average will be zero for

'In this age of pocket calculators, it is worth pointing out that an average such as (4.2) is easily calculated
in your head. Because all the numbers are in the seventies, the same must be true of the average. All that
remains is to average the numbers 1, 2, 2, 3, 1 in the units place. These numbers obviously average to
9/5 = 1.8, and our answer is X = 71.8.
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Table 4.1. Calculation of deviations.

Trial number Measured value Deviation
i % d = x—X
1 71 —-0.8
2 72 0.2
3 72 0.2
4 73 1.2
5 71 —(.8
>x; = 359 Xd; = 0.0

mean, X = Xx/N = 359/5 = 71.8

any set of measurements x,, . .., xy because the definition of the average ¥ ensures
that d; = x; — X is sometimes positive and sometimes negative in just such a way
that d is zero (see Problem 4.4). Obviously, then, the average of the deviations is
not a useful way to characterize the reliability of the measurements x,, . . ., Xy

The best way to avoid this annoyance is to square all the deviations, which will
create a set of positive numbers, and then average these numbers.”? If we then take
the square root of the result, we obtain a quantity with the same units as x itself.
This number is called the standard deviation of x,, . . ., xy, and is denoted ;15

= nlas > (x, — ) (4.6)

With this definition, the standard deviation can be described as the root mean square
(or RMS) deviation of the measurements x,, ..., x,. It proves to be a useful way
to characterize the reliability of the measurements. [As we will discuss shortly, the
definition (4.6) is sometimes modified by replacing the denominator N by N — 1.]

To calculate the standard deviation o, as defined by (4.6), we must compute the
deviations d,, square them, average these squares, and then take the square root of
the result. For the data of Table 4.1, we start this calculation in Table 4.2.

Table 4.2. Calculation of the standard deviation.

Trial number Measured value Deviation Deviation squared

i X, d, = x;, — X d?
1 71 —0.8 0.64
2 72 0.2 0.04
3 72 0.2 0.04
4 73 12 1.44
5 71 —0.8 0.64

2x; = 359 Xd; = 0.0 ¥4t = 280

X = 359/5 = 71.8

*Another possibility would be to take the absolute values |d| and average them, but the average of the ¢
proves more useful. The average of the |d)| is sometimes (misleadingly) called the average deviation.
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Summing the numbers d;” in the fourth column of Table 4.2 and dividing by 5,
we obtain the quantity o (often called the variance of the measurements),
2.80

, l <« 5
ol = Nzﬂj— = 0.56. 4.7)

Taking the square root, we find the standard deviation

o, = (0.7. (4.8)

X

Thus the average uncertainty of the five measurements 71, 72, 72, 73, 71 is approxi-
mately 0.7.

Unfortunately, the standard deviation has an alternative definition. There are
theoretical arguments for replacing the factor N in (4.6) by (N — 1) and defining
the standard deviation o, of x, ..., Xy as

(4.9)

I will not try here to prove that definition (4.9) of o is better than (4.6), except (o
say that the new “improved” definition is obviously a little larger than the old one
(4.6) and that (4.9) corrects a tendency for (4.6) to understate the uncertainty in the
measurements Xy, ..., Xy, especially if the number of measurements N is small.
This tendency can be understood by considering the extreme (and absurd) case that
N = 1 (that is, we make only one measurement). Here, the average x is equal to
our one reading x,, and the one deviation is automatically zero. Therefore, the defi-
nition (4.6) gives the absurd result o, = 0. On the other hand, the definition (4.9)
gives 0/0; that is, with definition (4.9), o, is undefined, which correctly reflects our
total ignorance of the uncertainty after just one measurement. The definition (4.6) 1S
sometimes called the population standard deviation and (4.9) the sample standard
deviation.

The difference between the two definitions (4.6) and (4.9) is almost always
numerically insignificant. You should always repeat a measurement many times (at
lcast five, and preferably many more). Even if you make only five measurements
(N = 5), the difference between \IN = 2.2 and \N — 1 = 2 is, for most purposes,
insignificant. For example, if we recalculate the standard deviation (4.8) using the
improved definition (4.9), we obtain o, = 0.8 instead of o, = 0.7, not a very
important difference. Nevertheless, you need to be aware of both definitions. In the
physics laboratory, using the more conservative (that is, larger) definition (4.9) is
almost always best, but in any case, your laboratory report should state clearly
which definition you are using so that your readers can check the calculations for
themselves.

Quick Check 4.1. You mecasure the time for a cart to roll down the same
length of track four times and get the following results:

21, 24, 25, 22
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(in seconds). Find the average time and the standard deviation as given by the
improved definition (4.9).

To understand the notion of the standard deviation, you must be able to calcu-
late it yourself for simple cases such as that in Quick Check 4.1. Most scientific
calculators, however, have a built-in function to do the calculation automatically,
and you will certainly want to use this function for real experiments that involve
numerous measurements. If you are not sure how to use your calculator to obtain
standard deviations, take the time to learn, and then use the function to check your
answer to Quick Check 4.1. Some calculators give you a choice of the definitions
(4.6) or (4.9); some use just (4.9). Make sure you know what yours does.

43 The Standard Deviation as the Uncertainty
in a Single Measurement

Recall the claim that the standard deviation o, characterizes the average uncertainty
of the measurements x,, ..., xy from which it was calculated. In Chapter 5, 1 will
justify this claim by proving the following more precise statement. If you measure
the same quantity x many times, always using the same method, and if all your
sources of uncertainty are small and random, then your results will be distributed
around the true value x,,,,. in accordance with the so-called normal, or bell-shaped,
curve. In particular, approximately 68% of your results® will fall within a distance
o, on either side of x,,.;: that is, 68% of your measurements will fall in the range
'r“llt' i (r.l"

In other words, if you make a single measurement (using the same method), the
probability is 68% that your result will be within o of the correct value. Thus, we
can adopt o, to mean exactly what we have been calling “uncertainty.” If you make
one measurement of x, the uncertainty associated with this measurement can be
taken to be

ox = o,;

with this choice, you can be 68% confident that the measurement is within dx of
the correct answer.

To illustrate the application of these ideas, suppose we are given a box of
similar springs and told to measure their spring constants &. We might measure the
spring constants by loading each spring and observing the resulting extension or,
perhaps better, by suspending a mass from each spring and timing its oscillations.
Whatever method we choose, we need to know & and its uncertainty 6k for each
spring, but it would be hopelessly time-consuming to repeat our measurements many
times for each spring. Instead we reason as follows: If we measure k& for the first

'As we will see, the exact number is 68.27 ... %, but stating this kind of number so precisely is obviously
absurd. In fact, it is often best to think of this number as “about two thirds.”
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spring several (say, 5 or 10) times, then the mean of these measurements should
give a good estimate of k for the first spring. More important for now, the standard
deviation o, of these 5 or 10 measurements provides us with an estimate of the
uncertainty in our method for measuring k. Provided our springs are all reasonably
similar and we use the same method to measure each one, we can reasonably expect
the same uncertainty in each measurement.” Thus, for each subsequent spring we
need to make only one measurement, and we can immediately state that the uncer-
tainty &k is the standard deviation o measured for the first spring, with a 68%
confidence that our answer is within oy, of the correct value.

To illustrate these ideas numerically, we can imagine making 10 measurements
on the first spring and obtaining the following measured values of k (in newtons/
meter):

86, 85, 84, 89, 85, 89, 87, 85, 82, 85. (4.10)

From these values, we can immediately calculate kK = 85.7 N/m and, using the
definition (4.9),

o, = 2.16 N/m (4.11)

~ 2 N/m. (4.12)

The uncertainty in any one measurement of k is therefore approximately 2 N/m. If
we now measure the second spring once and obtain the answer k = 71 N/m, we can
without further ado take 8k = o, = 2 N/m and state with 68% confidence that & lies
in the range

(k for second spring) = 71 = 2 N/m. (4.13)

44 The Standard Deviation of the Mean

If x,, ..., xy are the results of N measurements of the same quantity x, then, as we
have seen, our best estimate for the quantity x is their mean x. We have also seen
that the standard deviation o, characterizes the average uncertainty of the separate
measurements x,, ..., xy. Our answer x,., = X, however, represents a judicious
combination of all N measurements, and we have every reason to think it will be
more reliable than any one of the measurements taken alone. In Chapter 5, 1 will
prove that the uncertainty in the final answer X, = X is given by the standard
deviation o, divided by \fﬁ This quantity is called the standard deviation of the
mean, or SDOM, and is denoted o:

o = a,AN. (4.14)

(Other common names are standard error and standard error of the mean.) Thus,
based on the N measured values x,, ..., xy, we can state our final answer for the

*1f some springs are very different from the first, our uncertainty in measuring them may be different. Thus,
if the springs differ a lot, we would need to check our uncertainty by making several measurements for each
of two or three ditferent springs.
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value of x as

(value of x) = X * 6,
where x., = X, the mean of x,..., xy, and &x is the standard deviation of the
mean,
& = oz = o /NN (4.15)

As an example, we can consider the 10 measurements reported in (4.10) of the
spring constant k of one spring. As we saw, the mean of these values is k=857
N/m, and the standard deviation is o, = 2.2 N/m. Therefore, the standard deviation
of the mean is

o = o /N10 = 0.7 N/m, (4.16)
and our final answer, based on these 10 measurements, would be that the spring has

k = 85.7 £ 0.7 newtons/meter. (4.17)

When you give an answer like this, you must state clearly what the numbers are
namely, the mean and the standard deviation of the mean—so your readers can
judge their significance for themselves.

An important feature of the standard deviation of the mean, o = U_J\/Xf. is
the factor AN in the denominator. The standard deviation o, represents the average
uncertainty in the individual measurements x,, ..., xy. Thus, if we were to make
some more measurements (using the same technique), the standard deviation o,
would not change appreciably. On the other hand, the standard deviation of the
mean, (r_‘./‘\fﬁ. would slowly decrease as we increase N. This decrease is just what
we would expect. If we make more measurements before computing an average, we
would naturally expect the final result to be more reliable, and this improved relia-
bility is just what the denominator \fﬁ in (4.15) guarantees. This conclusion pro-
vides one obvious way to improve the precision of our measurements.

Unfortunately, the factor \/X/ grows rather slowly as we increase N. For exam-
ple, if we wish to improve our precision by a factor of 10 simply by increasing the
number of measurements N, we will have to increase N by a factor of 100—a
daunting prospect, to say the least! Furthermore, we are for the moment neglecting
systematic errors, and these are not reduced by increasing the number of measure-
ments. Thus, in practice, if you want to increase your precision appreciably, you
will probably do better to improve your technique than to rely merely on increased
numbers of measurements.

Quick Check 4.2. A student makes five measurements of e, the magnitude of
the electron’s charge, as follows:

15, 17, 18, 14, 16,

all in units of 102" coulombs. Find her best estimate for e (as given by the
mean) and its uncertainty (as given by the SDOM).
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4.5 Examples

In this section, I discuss two examples of simple experiments that make use of the
ideas of the past three sections.

Example: Area of a Rectangle

As a first, simple application of the standard deviation of the mean, imagine that we
have to measure very accurately the area A of a rectangular plate approximately 2.5
cm X 5 cm. We first find the best available measuring device, which might be a
vernier caliper, and then make several measurements of the length / and breadth b
of the plate. To allow for irregularities in the sides, we make our measurements a
several different positions, and to allow for small defects in the instrument, we use
several different calipers (if available). We might make 10 measurements cach of [
and b and obtain the results shown in Table 4.3.

Table 4.3. Length and breadth (in mm).

Measured values Mean SD SDOM

! 2425, 24.26, 24.22, 2428, 2424 1 = 24245 o, = 0.019 a7 = 0.006
24.25, 24.22, 24.26, 24.23, 24.24

b 5036, 50.35, 50.41, 5037, 5036 b = 50368 o, = 0024  oj; = 0.008
50.32, 50.39, 50.38, 50.36, 50.38

Using the 10 observed values of /, you can quickly calculate the mean 1, the
standard deviation o, and the standard deviation of the mean o7, as shown in the
columns labeled mean, SD, and SDOM. In the same way you can calculate b, o),
and oj. Before doing any further calculations, you should examine these results to
see if they seem reasonable. For example, the two standard deviations o; and oy, are
supposed to be the average uncertainty in the measurements of / and b. Because [
and b were measured in exactly the same way, o; and o, should not differ signifi-
cantly from each other or from what we judge to be a reasonable uncertainty for
the measurements.

Having convinced yourself that the results so far are reasonable, you can
quickly finish the calculations. The best estimate for the length is the mean 1 and
the uncertainty is the SDOM o; so the final value for [ is

[ = 24.245 + 0.006 mm (or 0.025%);
the number in parenthesis is the percentage uncertainty. Similarly, the value for b is
b = 50.368 = 0.008 mm (or 0.016%).

Finally, the best estimate for the arca A = [b is the product of these values, with a
fractional uncertainty given by the quadratic sum of those in / and b (assuming the
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errors are independent):
A = (24.245 mm = 0.025%) X (50.368 mm =+ 0.016%)
= 1221.17 mm?* * 0.03%

= 1221.2 + 0.4 mm?>. (4.18)

To arrive at the answer (4.18) for A, we calculated the averages [ and b, cach
with an uncertainty equal to the standard deviation of its mean. We then calculated
the area A as the product of / and b and found the uncertainty by propagation of
errors. We could have proceeded differently. For instance, we could have multiplied
the first measured value of / by the first value of b to give a first answer for A.
Continuing in this way we could have calculated 10 answers for A and then have
subjected these 10 answers to statistical analysis, calculating A, o, and finally oy.
If, however, the errors in / and b are independent and random, and if we make
enough measurements, this alternative procedure will produce the same result as the
first one.”

Example: Another Spring

As a second example, consider a case in which a statistical analysis cannot be
applied to the direct measurements but can to the final answers. Suppose we wish
to measure the spring constant k£ of a spring by timing the oscillations of a mass m
fixed to its end. We know from eclementary mechanics that the period for such
oscillations is 7 = 2m\m/k. Thus, by measuring 7" and m, we can find k as

k = 4m°m/T-. (4.19)

The simplest way to find & is to take a single, accurately known mass m and make
several careful measurements of 7. For various reasons, however, timing 7 for sev-
cral different masses m may be more interesting. (For example, in this way, we
could check that 7 o \/m as well as measure k.) We might then get a set of readings
such as those in the first two lines of Table 4.4.

Table 4.4. Mecasurement of spring constant k.

Mass m (kg) 0.513 0.581 0.634 0.691 0.752 0.834 0.901 0.950
Period T' (s) 1.24 1.33 1.36 1.44 1.50 [.59 1.65 1.69
k = 47*m/T? 13.17 12.97 etc.

It obviously makes no sense to average the various different masses in the top
line (or the times in the second line) because they are not different measurements
of the same quantity. Nor can we learn anything about the uncertainty in our mea-
surements by comparing the different values of m. On the other hand, we can com-

*The second procedure has a certain illogic because there is no particular reason to associate the first
measurement of / with the first measurement of b. Indeed, we might have measured [ eight times and b twelve
times: then we couldn’t pair off values. Thus, our first procedure is logically preferable.

105



106

Chapter 4: Statistical Analysis of Random Uncertainties

bine cach value of m with its corresponding period 7' and calculate k, as in the final
line of Table 4.4. Our answers for k in the bottom line are all measurements of the
same quantity and so can be subjected to statistical analysis. In particular, our best
estimate for & is the mean, k = 13.16 N/m, and our uncertainty is the standard
deviation of the mean, oz = 0.06 N/m (see Problem 4.20). Thus, the final answer,
based on the data of Table 4.4, is

spring constant k = 13.16 £ 0.06 N/m. (4.20)
If we had formed reasonable estimates of the uncertainties in our original mea-
surements of m and 7, we could also have estimated the uncertainty in k by using

error propagation, starting from these estimates for om and 87. In this case, it would
be a good idea to compare the final uncertainties in k obtained by the two methods.

4.6 Systematic Errors

In the past few sections, I have been taking for granted that all systematic errors
were reduced to a negligible level before serious measurements began. Here, | take
up again the disagreeable possibility of appreciable systematic errors. In the example
just discussed, we may have been measuring m with a balance that read consistently
high or low, or our timer may have been running consistently fast or slow. Neither
of these systematic errors will show up in the comparison of our various answers
for the spring constant k. As a result, the standard deviation of the mean oz can be
regarded as the random component k., of the uncertainty 8k but is certainly not
the total uncertainty k. Our problem is to decide how to estimate the systematic
component 8k, and then how to combine 8k, and 6k, to give the complete
uncertainty Sk. -

No simple theory tells us what to do about systematic errors. In fact, the only
theory of systematic errors is that they must be identified and reduced until they are
much less than the required precision. In a teaching laboratory, however, this goal
is often not attainable. Students often cannot check a meter against a better one (0
correct it, much less buy a new meter to replace an inadequate one. For this reason,
some teaching laboratories establish a rule that, in the absence of more specific
information, meters should be considered to have some definite systematic uncer-
tainty. For example, the decision might be that all stopwatches have up to 0.5%
systematic uncertainty, all balances up to 1%, all voltmeters and ammeters up 10
3%, and so on.

Given rules of this kind, there are various possible ways to proceed. None can
really be rigorously justified, and we describe just one approach here. (Problems
4.23 to 4.28 contain more examples.) In the last example in Section 4.5, the spring
constant k = 4r®m/T> was found by measuring a series of values of m and the
corresponding values of 7. As we have seen, a statistical analysis of the various
answers for k gives the random component of ok as

Sk.. = op = 0.06 N/m. (4.21)

ran

Suppose now we have been told that the balance used to measure m and the clock
used for T have systematic uncertainties up to 1% and 0.5%, respectively. We can
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then find the systematic component of 8k by propagation of errors; the only question
is whether to combine the errors in quadrature or directly. Because the errors in m
and T are surely independent and some cancellation is therefore possible, using the
quadratic sum is probably reasonable®; this choice gives

Moy _ \/(@-"—) 4 (QST’“"“)2 (4.22)
k m T
= V%P + 1%)? = 1.4% (4.23)
and hence
Bhyys = kpest X (1.4%) (4.24)

= (13.16 N/m) X 0.014 = 0.18 N/m.

Now that we have estimates for both the random and systematic uncertainties
in k., we must decide how to state our final conclusion for the spring constant k with
its overall uncertainty. Because the method for combining ok, and &k is not
completely clear, many scientists leave the two components separate and statc a
final answer in the form

(measured value of k) = kg = Okpyy = Oy (4.25)
= 13.16 = 0.06 = 0.18 N/m

(all of which should probably be rounded to one decimal place). Alternatively, a
case can be made that ok,,, and &k, should be combined in quadrature, in which
case we could state a single, total uncertainty

Sk = N(Skpyy)® + (kyy) (4.26)
= (0.06)> + (0.18)> = 0.19 N/m

and replace the conclusion (4.25) by

(measured value of k) = ky. = 6k
= 13.16 = 0.19 N/m

or, probably better, 13.2 + 0.2 N/m.

The expression (4.26) for 6k cannot really be rigorously justified. Nor is the
significance of the answer clear; for example, we probably cannot claim 68% confi-
dence that the true answer lies in the range k + &k. Nonetheless, the expression
does at least provide a reasonable estimate of our total uncertainty, given that our
apparatus has systematic uncertainties we could not eliminate. In particular, there is
one important respect in which the answer (4.26) is realistic and instructive. We saw
in Section 4.4 that the standard deviation of the mean oy approaches zero as the
number of measurements N is increased. This result suggested that, if you have the

“Whether we should use the guadratic or ordinary sum really depends on what is meant by the statement
that the balance has “up to 1% systematic uncertainty.” If it means the error is certainly no more than 1%
(and likewise for the clock), then direct addition is appropriate, and 8k, is then certainly no more than 2%.
On the other hand, perhaps an analysis of all balances in the laboratory has shown that they follow a normal
distribution. with 68% of them better than 1% reliable (and likewise for the clocks). In this case, we can use

addition in quadrature as in (4.22) with the usual significance of 68% confidence.
q g
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patience to make an enormous number of measurements, you can reduce the uncer-
tainties indefinitely without having to improve your equipment or technique. We can
now see that this suggestion is incorrect. Increasing N can reduce the random com-
ponent ok, o7z indefinitely. But any given apparatus has some systematic uncer-
tainty, which is not reduced as we increase N. From (4.26) we clearly see that little
is gained from further reduction of k,,,, once 8k, is smaller than 6k,,.. In particu-
lar, the total 6k can never be made less than k.. This fact simply confirms what
we already guessed, that in practice a large reduction of the uncertainty requires
improvements in techniques or equipment to reduce both the random and systematic
errors in each single measurement.

As discussed in Chapter 2, a peculiar feature of the teaching laboratory is that
you will probably be asked to measure quantities, such as the acceleration of gravity,
for which an accurate, accepted value is already known. In this kind of experiment,
the logic of the error analysis is a bit confusing. Probably the most honest course is
to ignore the known accepted value until after you have done all calculations of
your measured value, ¢,.,. and its uncertainty. Then, of course, you must ask
whether the accepted value lies inside (or at least close to) the range ¢, *= oq. If
it does, you can simply record this agreement in your report. If the accepted value
lies well outside the range ¢,,., = 6g, however, you have to examine the possible
causes of the excessive discrepancy. For example, you might measure g, the acceler-
ation of gravity, and get the results (all in m/s?),

Bhest = 9-97, (4.27)
with uncertainties
08 = 002 and 9dg, = 0.03,
and hence a total uncertainty, as in (4.26), of
og = 0.04.

Clearly, the accepted value of

Il

g = 9.80 m/s’

lies far outside the measured range, 9.97 £ 0.04. (More specifically, the discrepancy
is 0.17, which is four times the uncertainty.) This result is definitely nor satisfactory
and further analysis is required.

The first thing to check is the possibility that you made a downright mistake in
calculating g,.., or onc of the uncertainties og,,, and 8g,,.. If you can convince
yourself that all your calculations were correct, the next p;:ssihility is that the ac-
cepted value is wrong. In the case of g = 9.80 m/s” this possibility is rather unlikely,
but it is entirely possible for plenty of other cases. For example, suppose you were
measuring the density of air; because this is strongly dependent on the temperature
and pressure, you could easily have looked up the wrong accepted value for this
parameter.

Once you have eliminated these suspects, only one possibility is left: You musl
have overlooked some systematic error so that your value of 8g,,. is too small
Ideally, you should try to find the culprit, but this search can be hard because of the
many possibilities:
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(1) Perhaps one of your meters had larger systematic errors than you had al-
lowed for when you calculated 8g,,.- You can investigate this possibility by de-
termining how large a systematic error in your clock (or voltmeter, or whatever)
would be needed to account for the offending discrepancy. If the needed error is not
unreasonably large, you have one possible explanation of your difficulty.

(2) Another possible cause of systematic error is that you used an incorrect
value for some parameter needed in your calculations. A celebrated example of this
was Millikan’s famous measurement of the electron’s charge, ¢. Millikan’s method
depended on the viscosity of air, for which he used a value that was 0.4% too small.
This discrepancy caused all of his values of e to be 0.6% too small, an error that
was not noticed for nearly 20 years. This kind of mistake sometimes arises in a
teaching laboratory when a student uses a value that has too few significant figures.
For example, suppose you do an experiment with protons and you expect to have
an accuracy better than 1%. If you take the proton’s mass to be 1.7 x 10 %7 kg
(instead of the more exact 1.67 X 10 ~ *7 kg), you will have introduced a 2% sys-
tematic error, which will almost certainly frustrate your hope for 1% results.

(3) Much harder to analyze is the possibility of a flaw in the design of the
experiment. For example, if you had measured g by dropping an object from a great
height. air resistance could introduce an appreciable systematic error. [Note, how-
ever, that this error would not account for the large value of g in (4.27) because air
resistance would cause an acceleration that was too small.] Similarly, if you try to
measure the half-life of a radioactive material and your sample is contaminated with
another material of shorter half-life, you will get an answer that is systematically
too short.

Obviously, tracking down the source of systematic errors is difficult and has
defied the best efforts of many great scientists. In all probability, your instructors
are not going to penalize you too severely if you fail to do so. Nevertheless, they
will expect an intelligent discussion of the problem and at least an honest admission
that there appear to have been systematic errors that you were unable to identify.

Principal Definitions and Equations of Chapter 4

Suppose that we make N measurements, x|, X,, ..., xy of the same quantity x,
all using the same method. Provided all uncertainties are random and small, we
have the following results:

THE MEAN

The best estimate for x, based on these measurements, is their mean:

z

X = > X [See (4.5)]
!

L1
N;
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THE STANDARD DEVIATION

The average uncertainty of the individual measurements x, x,, ..., Xy 1S given
by the standard deviation, or SD:

o, = \/ﬁ > (6 — %> [See (4.9)]

This definition of the SD, often called the sample standard deviation, is the most
appropriate for our purposes. The population standard deviation is obtained by re-
placing the factor (N — 1) in the denominator by N. You will usually want to calcu-
late standard deviations using the built-in function on your calculator; be sure you
know which definition it uses.

The detailed significance of the standard deviation o is that approximately 68%
of the measurements of x (using the same method) should lie within a distance o,
of the true value. (This claim is justified in Section 5.4.) This result is what allows
us to identify o, as the uncertainty in any one measurement of x,

ox = o

X?

and, with this choice, we can be 68% confident that any one measurement will fall
within o, of the correct answer.

THE STANDARD DEVIATION OF THE MEAN
As long as systematic uncertainties are negligible, the uncertainty in our best
estimate for x (namely X) is the standard deviation of the mean, or SDOM,

o = —x [See (4.14)]

VN
If there are appreciable systematic errors, then o gives the random component of
the uncertainty in our best estimate for x:

(S.Xrun o= (TI v

If you have some way to estimate the systematic component dx,,. a reasonable (but
not rigorously justified) expression for the total uncertainty is the quadratic sum of

ox... and ox.,.:

ren EAEN

Bor = V(OXan)? + (Sxgye) [See (4.26)]

Problems for Chapter 4

For Section 4.2: The Mean and Standard Deviation

4.1. * You measure the time for a ball to drop from a second-floor window three
times and get the results (in tenths of a second):

L1, 13, 12,



