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however, the binomial frequency function approaches either the Poisson or
the Gaussian frequency function, which will be discussed in Sections 1 0.2.6
and 10.2.7. In order for the binomial frequency function' to approach the

Poisson distribution  n must be large, for example, n > 100,
but ;¢ = np must be finite and small,
for example, p < 0.05.

Gaussian distribution  n must be large, for example, n > 30,
and also p must be large, for example,
p > 0.05.

10.2.6. The Poisson Frequency Function

This is still a frequency function for the discrete random variable x, which
describes. as in Section 10.2.4, the number of times event A will be obtained
if the experiment is repeated n times when n — oc for (large n). Contrary
to Eq. (10.6). however, neither n nor p appears explicitly in the analytic
expression of the frequency function, but instead only their product

y=np, (10.10)

which remains finite despite n — 00, since p — 0. The Poisson frequency
function is given by

Fl)i== . (10.11)

and it is shown in the next section that y is the mean of the distribution
governed by Eq. (10.11).

To prove Eq. (10.11), let us first note that since n is large, it (but not x)
may be treated as a continuous variable: second, we will assume that for a
small (differential) number of trials dn, the probability of obtaining event
A once is proportional to this number of trials: that is,

P{l.dn} = rdn, (10.12)

where A is a constant. Note that Eq. (10.6) fulfills this requirement for
¥ = 1 in the limit that p — 0 or ¢ — 1. In terms of sample space our
assumption means that the density of sample-space points containing event
A is uniform in the limit of a differential element of sample-space area.

I See. however. the detailed discussion in Section 10.2.9.
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The Pois?son frequency function then follows for all populations for which
assumption (10.12) is valid.

| Let P{x, n} t.}e the probability of obtaining event A, x times in n trials.
so that P{Q..H} is the probability of obtaining no events A in n trials. Then
the probability of obtaining no events in n 4 dn trials is

P{O.n +dn}) = P{0.n}-[1 — P{1,dn}]
since the events are independent.” Using Eq. (10.12) we obtain
P{0.n +dn} — P{0, n)

an = —-P{0,n} A
or
_dP{U.u} _ P10 )
dn = Pi0in-2,

which has the solution
In P{O, n} = —ni
P{0,n} = e " (10.13)
and use has been made of the initial condition that for n = 0
P{0,0} = 1.
In a similar manner we obtain
P{l.n +dn} = P(1,n}P{0,dn} + P{0,n}P{1,dn),
w?wre the two possible either probabilities are summed. Making use again
of Eq. (10.12), we may write the above result as )
P{l,n +dn} = P{1,n}-[1 — idn] + P{0.n) - rdn
by further transforming and using Eq. (10.13) as well,
dP{l.n)
dn
The solution of this linear first-order equation is straightforward, leading to

+AP{l,n} — re " =0,

Pll.n) = [f e re " dn + C:l = (nh)e ", (10.14)
making use of the initial condition P{1,0} =0.

by )
2Sinc A — i sk
o e the increase in the number of trials ¢n is differential, the possibility of obtaining
ore than one event in dn is excluded. i
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In general the following recursion formula holds

APV | o pix,n) = AP{(x=1),n) =0,
dn
which is satisfied by
3% na
Plx)= Pl 0} = %f’— (10.15)

as can be verified by substitution.

Thus Eq. (10.11) has been proven, and we can identify the proporllon-
ality constant A as the probability that event A will occur in one trial.? As
pointed out before, however, it is only the product y = An = pn that
may be properly defined: it is the theoretical mean of the discrete random
variable x when the same (large) number of n trials is repeated many times.

Equation (10.11) correctly fulfills the normalization requirement

n=0og o0 vx

i i) LIS,
E fx)y=e E x!_e e’ =J;
x=0 x=0

It is shown in Section 10.2.9 that Eq. (10.11) is the limiting form of
Eq. (10.6) when p — O and n — oc.

10.2.7. Moments of the Poisson Frequency Function

Following the approach used in Section 10.2.5, the moments of the Poisson
frequency function will be obtained by direct evaluation of the defining
equations; note that as n — oo the upper limit of x is also oc:

/ i il y*e™
X —
e et X_% x! g(x— D!
o0 V("‘_“ ’
-—e_"‘y - = £ ‘\eé’}z}'
= 1)!
xX=
Thus
w=y (10.16)
3p(1,1) = he ™ — A when i < L.

10.2 Frequency Functions of One Variable 439

as expegted from our previous discussion. We see that through Eq. (10.16)
we obtain the physical significance for the parameter y. Further,

and using Eq. (10.5) we obtain

2 '
H2=0" =y — " =y 4y —y =y.

Thus

o=y (10.17)

The close analogy of Eq. (10.16) to Eq. (10.8) and of Eq. (10.17) to
Eq. (10.9) should be clear; also the derivation of these equations is
completely analogous.

10.2.8. The Gaussian or Normal Frequency Function
and Its Moments

Thls is indeed a most important frequency function because (a) it is a lim-
iting case that many frequency functions approach; (b) the distribution
of most physical observables is satisfactorily described by it; and (c) mea-
surements containing random errors are distributed normally about the true
value of the measured quantity.

The Gaussian distribution gives the frequency of the continuous random
variable x in terms of two parameters a and b, which are the first and second
moments of the frequency function. In its normalized form, the Gaussian

distribution is given by
1 - 1 /x —a\?
ir p > —b_) dx (10.18)

and is shown in Fig. 10.5. The range of the variable x is from —oo to
+20. In order to show the normalization of Eq. (10.18), as well as to find
the moments, it is useful to know the values of the integral of x"e %Y

fx)dx =
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FIGURE 10.5  The Gaussian frequency function normalized to zero mean and unit variance
flxydx = (1/+/2n Je~*"/2 dx. Note that the probability of finding a value of x between
x1 and x3 is proportional to the corresponding area under the Gaussian.

00 on

TABLE 10.2  Value of the Integral f(n) = f5~ exp(—ax?) dx

i fin) n fin)
0 sVla ! 1/2a
) -ll \""'__JT 72 7 3 1/ 242
4 g\.-":r;’us 5 1/a?

I f T T
: _ 00 . S T 2f(n) whenniseven
fun = [T x"exp(—axT)dx = {U e s

which are summarized in Table 10.2. To obtain the moments we proceed

as before
[ | (—) ;
- xYexp| —— dx.
" U™ bPr oo P172 b

We let x = th + a.dx = bdt: thus

1 i 22 e 25
= |:f bre=""/?) di —i—f ae "9 d{] ;
V2 — —0C

0

According to Table 10.2, integrals with odd powers of ¢ vanish, thus
w=a. (10.19)
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Similarly

7

ta =

_ai fwrzex 1 (x—a\?
bv2m e T T 5( b ) 4

with the same substitution

, 1 +0C - =
My = T {f b*t2e= /2 gy
J -0

+ac-j (1335 too
_ 3 i

+ .\ 2abte a’r+f a‘e "1y |,
-0 —0C

so that by using Table 10.2 we obtain

| 511 2 5
o |:b'§s/87r +a'v2:r:| =a° + b*

and. using Eq. (10.5),

!
Ky =

2

=0 =;,{’3—,u:=b3.

(]

Thus

a=1b, (10.20)

; W; see lhalf through Egs. (10.19) and (10.20), we obtain the physical
significance of the parameters ¢ and b of Eq. (1 ' )
. of Eq. (10.18). Thus, Eq. (10.18)

ween I (0 —x ;
f(.x)d.x._omexp[—i (—J—) dx. (10.21)

Itiss i ;i ;
sometimes useful to transform the random variable linearly so as to

Ob]_‘ . i . . i - d t .

= de dx

o ? o
and Eq. (10.18) becomes (as shown in Fig. 10.5)

. ] 244
fdy = \/T_?re 2 gy, (10.22)



10.2.9. The Gaussian Frequency Function
as a Limiting Case

In the previous section we gave Eq. (10.18) without proof. We will
now show that it can be obtained from the binomial frequency function,
Eq. (10.6), in the limit of n — large and |np — x| < np.

Consider Eq. (10.6):

n! . .
f(x) — p.lqﬂ'—,\l
x!l(n —x)!
If n — oo but np — i remains finite, we may write

(n—l}---(n—x-l—l)_(np)"'l

fay=" : L (1= p)
n ¥ 3
- {1 S i - X
£lx) = 1[1 —(1/n)] -~ _ (x —1)/n] (np) = py. (1023)
(1= p)* x!
However,

(1=p)"=[1=p~ VPP — ¢
since from the definition of e,
lim(1+2)!/% =
and in the present case we have p — 0. Further

. 1=(@1/n)]--[1=(x—=1)/n]
lim =1
n—00 (1—p)*

because p — 0 and x is finite; by substituting the last two expressions into
Eq. (10.23) we obtain the Poisson frequency function, Eq. (10.11):

ute H

flx)=—
X

We now use the further condition that x be a continuous variable and
|[np — x| < np, namely, its deviations from the mean p be small; then the
following approximate expression is valid:

5
— " 1 — 2
Ingzln(lﬂr'u' x)__(,u ‘)——(N x)+
x X X 2 x

Srm s mmemar e MO WMWY W W W YOIIOUIE il

Hence

and

& X

_ ] —x 2
p' &~ xtexp(u — x)exp |:—-; W —x) j| ;
From Stirling’s formula we have
x! > 2rxx*e™™
and by substituting ()" and x! into Eq. (10.11) we obtain

Fle) = ,‘.L"'t’_‘“ B e~ HxX p(l=x) exp[ - %[(# - X}E/X]]
. x! V2T xxte X

l : (“_“')2 10.24
= exp| —= ; .
2T X d 5 ﬁ ( :
Thus the binomial frequency function in its limit approaches a Gaussian
frequency function with

mean U =np
standard deviation o = /x &~ /npgq, (10.25)

where x & npq follows from |y — x| < p and p — 0. From Eq. (10.25)
we see that the moments of the limiting Gaussian frequency function are
the limits of the moments of the original binomial frequency function.

10.2.10. Properties of the Gaussian Frequency Function

Let us now interpret the frequency function given by Eq. (10.18). We
could refer to our original example of obtaining event A, x times when
a c‘hoice between A or B is made n times: x then can vary from 0 to n
In integer values. It is easier, however, to consider the measurement with
a ruler of the length of a rod; we let the continuous random variable x
represent the result of one measurement. If the true length of the rod is xg,
Eq. (10.18) specifies that a result between x and x + dx will be obtained
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with a frequency

flx)dx =

1 /x0—x 2
exp __(\U ‘) dx. (10.26)

o2n 2 o

One may also say that the probability that the measurement will “yield a
result x” between x and x + dx is given by Eq. (10.26). In simpler words.
if N measurements are performed, a result between x| and x; is likely to
be obtained in n(x;, x2) of these measurements, where

PR Y T . f 1("'”_"‘)- /
xX1.x)=N-F(x),x) = exp|—= dx
nixp. x2 X1, X2 o s p 3 g .

(10.27)

as shown in Fig. 10.5.

Note that in Egs. (10.26) and (10.27) the standard deviation o is deter-
mined by the conditions of the measurement. The applicability of the
Gaussian distribution to the results obtained from such measurements lies
in the fact that: (a) n, the number of (least) divisions of the ruler, is large
and (b) the errors in measurement |xg — x| are small as compared to x.

In Table 10.3 are given the values of f(x) and its integral. F'(c), for the
normalized Gaussian function (Eq. (10.22)).

From Table 10.3, for example, we see that half of the measurements do
yield a result x between

xp0— 0.690 < x < xg+ 0.690
or that only 2.23% of the results may yield x, such that
X > xp+ 20.

TABLE 10.3 Some Numerical Values of the Normalized
Gaussian Function

expl —.\'2 /2) F(—c.c)= I:L flx)dx

flx)=
“ \/“‘_

2w

F(—=1.1) = 0.6826
F(—=2,2) =0.9554
F(=3,3) =0.9974
F(—=0.69.0.69) = 0.5000

f10) = ().3989
()= f(—=1)=10.2420
fi(2) = f(—2) = 0.0540
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As another example we see that a result x in the small interval Ax about
X, will be obtained (0.3989)/(0.0540) = 7.4 times more frequently than
aresult in the same small interval Ax about xy + 20.

10.3. ESTIMATION OF PARAMETERS AND
FITTING OF DATA

In Section 10.1 the basic definitions were given; in Section 10.2. analytic
expressions for some frequency functions were obtained. We will now see
how statistics can be applied to the interpretation of a measurement or an
experiment.

We can consider one or more measurements to form a sample of a pop-
ulation that obeys a certain frequency function; we are then faced with one
of two estimation problems:

(a) Given the frequency function and its parameters, what is the
probability of obtaining from a measurement the result x?

(b) Given the result x of a measurement, what are the parameters of the
frequency function (or the frequency function itself )?

In physics we are usually faced with estimation of type (b), since a set
of experimental data are obtained, and it is then desired to reduce them to
a few parameters that should describe the whole population and therefore,
also any new measurement that may be performed.

There are several methods for obtaining “estimators™ to an unknown
parameter. Some of these methods are almost subconsciously applied, but
most of them can be derived from the principle of “maximum likelihood"
introduced by R. A. Fisher in 1920.

10.3.1. Maximum Likelihood

TO apply this principle we must have knowledge of the normalized
frequency functions of the variables x; that form the data,
fxi.6),

\r\«’her? ¢ is the parameter to be estimated and upon which the frequency
t'UI'lCll()[‘l depends. We may then form the product of the frequency functions
for all observed variables,

L(xp,x2,...%0,0) = f(x1,0)f(x2,0) - f(xn,0), (10.28)
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which is called the likelihood function for the parameter ¢ (note that L is
not a frequency function for the parameter ). The theorem of maximum
likelihood then states that the value of €, 6%, that maximizes L (for the set
of observed data) is the best estimator of &:

(‘)L{Al. X2y 00 Xy 9}
a6

= 0.

0=0*

In practice, it is almost always convenient to work with the logarithm of
L, since when W = log L is maximum, so will also be L.

As an example, we consider a set of n data x; that obey a normal fre-
quency function about a, with a standard deviation o, let us seek the best
value for the parameter a:

: 1 1 fa— x; 2
flxj.a) = exp|—= . (10.29)
o2 2 o

n
L= l—[ flxi,a)

=1

Then

and

WzlogL:—nlog(ov”E)—ii(a_x")é. (10.30)

Setting (8W)/(da) = 0 leads to the estimator a*;

n n
a* — x; na* X
yE Hap 23 E_p
o- — g
1

: a-
i

or

l n
* _ x;i. (10.31)
“ n;l '

Thus if a set of measurements is distributed normally, the best estimator
for the true value of the parameter is the mean of the measurements (first
moment).
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Similarly we may obtain the estimator, o*, for o, by differentiating
Eq. (10.30) with respect to o

=t 2[5 (5]

and setting dW/do = 0 gives

IR - )

(@) =~ ;(a—x,}. (10.32)
where, in Eq. (10.32), a should be replaced by its estimator a* given by
Eq. (10.31). Again we obtain the familiar result that the best estimator for
the standard deviation of the theoretical frequency function is given by the
second moment (about the mean) of the observed measurements.

The principle of maximum likelihood can be further extended to give the
variance S? of the estimator 6*; that is, if the determination of estimators
#* is repeated, the values so obtained will have a standard deviation S,

where
R

1 W :
g = (10.33)
We may apply Eq. (10.33) to our sample of measurements that obeys a
normal frequency function, where W was given by Eq. (10.30). We obtain

]_ BEW_” l_n

T = = :
S= da’ — g2 o?
i

Thus the standard deviation of the estimator will be
a

§= ﬁ (10.34)

where 7 is the number of measurements used for obtaining each estimator.
Eguauon (10.34) is a well-known result that we will obtain again when we
discuss the combination of errors in Section 10.4.

10.3.2. The Least-Squares Method

Until now we have discussed the case where all 7 measurements are made
on the same physical quantity whose true value is a, for example, the data of
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FIGURE 10.6 Least-squares fit of a two-dimensional curve to a set of data points obtained
for different values of x. Note that each data point has associated with it a different error
as indicated by the flags; this is taken into account when forming the least-squares sum.
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Eq. (10.29). However. consider now a set of measurements yielding values
V1. V2. .... v, depending on another variable x: the corresponding true
values of v, which we designate by V. are assumed to be a function of x and
of one or more parameters &, common to the whole sample. Thus we write

Vi = Y(XitQgyve s ay). (10.35)

Further, each measurement y; has associated with ita standard deviation
o;. which is not the same for each point. This situation is shown in Fig. 10.6.

It is possible that the form of Eq. (10.35) is known or may be correctly
inferred from the physics of the process under investigation, in which case
the estimation is reduced to finding the best estimators for the parameters
a,. If, however. the form of Eq. (10.35) is not known. various functional
relationships must be assumed, for example, a polynomial of order k. We
then speak of fitting a curve to the data. Even though special techniques are
developed in Section 10.3.4 to ascertain which curve fits best. the following
discussion is generally applicable.

The method of least squares follows directly from the assumption that
each individual measurement y; is a member of a Gaussian population with
a mean given by the true value of vi, ¥(xi: a;): for the standard deviation
of this Gaussian we use the experimental error o; of each measurement.
Then in analogy to Eq. (10.29) we write for the frequency function of v;

: | 1 [ yi — ¥(xis ai) 2
FOixy ay) = \/”_cxp == [;__7] ] ’ (10.36)

I'TI i e O-il

—— — —
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and in analogy with Eq. (10.28) we form the likelihood function

n
Ly Xpexpsap) = n v xisaz).

i=I

We seek the estimators a; that maximize this function, or its logarithm W

W =logL
n
| n PRI .17 S S
=-Ylog(oiv2r) - Y {‘——‘-(?;”] . (1037)
i=1 “ =1 %

Since the values of o; are fixed by the measurement, the estimators a** are
those values of a;_ that minimize the sum '

n S .- SR <
M=y 2 -‘;";‘”’“”. (10.38)

that is, those that give the “least-squares sum.” They are obtained by solving
the simultaneous equations

oM
=0 A=1ltov.

da;

10.3.3. Application of the Least-Squares Method to a
Linear Functional Dependence

The simplest case of functional dependence y(x) is the linear one:
v =ax + b.

[1" W i 1 - r ] IO
¢ assume that every measurement y; has the same standard deviation

(statistical \\feighl;-, we may obtain the estimators ¢* and »* that minimize
Eq. (10.38) in closed form.

'S.mcje o) =02 = --- =0, = o, instead of Eq. (10.38) we need only
minimize

]
R= ZI)‘; — (@ + bx;)]*. (10.39)

i=l
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Hence
B:R n
T —2 ;i)-‘; —(a+bx)] =0
- (10.40)
AR .
S =) — ) o
=y = 22 (i = (@+bx)lxi} =0,

i=1
which after some manipulation® leads to
Y2 yi— X xi X xiyi)
-
x2=Y x Y xi
ML 2N L (10.41)

nY (xiyi) — 2 Yi X

n Exf -3 xi ) xi '

The standard deviations for the above estimators may be obtained by an
extension of Eq. (10.33), which now yields a symmetric square matrix

2w 1 M
dada, 202 dazday,

a =

b* =

(10.42)

H}Lp =

The elements of the inverse matrix give the variance of the estimators
a*. A complete discussion of this error matrix is given in Section 10.4;
suffice it to say here that the usually given expressions (Egs. (10.43)) for
the standard deviation of the estimators (Egs. (10.41)) are the square roots
of the diagonal elements of H~! (see Eq. (10.63)). We then obtain

{ X2

a* = H_I = 2 ';
o \/(——)a‘, ¢ n Z"(::- = ZX,' Z-’:f
= - _ n )
op \/m U\JHZIE—Z.\%ZM

In case o) # 03 # - - - # 0y, it is M and not R that must be minimized.
Clearly, such calculations are best done using computer programs. In

fact, many packages and self-contained programs that are designed to

handle these kinds of problems are available (both commercially and

(10.43)

4Note that the second of the above equations is by no means equal to the first one
multiplied by x;.
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through “shareware”). In this book, we default to MATLAB (see
Appendix B), which is in fact well suited for dealing with problems formu-
lated in terms of matrices. For the problem of linear (or, more generally,
polynomial) function fitting with equally weighted data points, MATLAB
provides the polyfit utility for exactly this purpose.

For more general problems, the reader is referred to other textbooks
on the subject of data analysis. For example, the problem of linear fitting
with unequally weighted data points is discussed in Chapter 5 of Nume-
rical Methods for Physics, 2nd ed., by Alejandro Garcia (Prentice-Hall,
Englewood Cliffs, NJ, 2000). A program linreg for this task, is described
and the code is available online from the publisher as a MATLAB m-file,
as well as in the languages C++ and FORTRAN.

10.3.4. Goodness of Fit; the x* Distribution

Wc have seen how the least-squares method, as a consequence of the prin-
ciple of maximum likelihood, may be used to fit a curve to a set of data.
ane the curve has been found, however, the necessity to ascertain quan-
t‘uative]y how good the fit is arises. This is important especially if the
fgnctic)nai dependence is not known, a poor fit might indicate the neces-
ity fo.r fitting with a curve of higher order, or a poor fit might indicate
inconsistencies in the data.

Similarly, we may wish to test whether a certain hypothesis is supported
by the data, in which case the goodness of the fit may establish the level of
confidence with which the hypothesis should be accepted.

Let us first suppose that we know the true functional relationship of y
o x, thatis, y(x) = f(x); we may then form the least-squares sum ‘

n

_ |,‘r'f' = }_(‘; }]2 )
M=) ——— (10.38)

i=lI 9j

The range of M is 0 < M < +00 but we would be surprised if M = 0
and would be equally surprised if M was extremely large. Thus we have
already a quantitative indication as to how well the data fit the known (or
assumed) curve y = f(x).

[f_ a new set of data pertaining to the same experimental situation is
gbtamed.. Fmd Eq. (10.38) is again formed, a new value M will result.

learly, if enough such measurements are repeated, each time yielding
4 value for M, we will obtain the frequency function for M. Once th:c
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frequency function is known, it is then easy to tell what the probability of
obtaining a specific M is. We may, for example, calculate that in 95% of
the cases M < Mo: if then a specific set of data yields M > Mo, we know
that such data should be obtained only in 5% of the experiments and can
therefore be rejected.

Obtaining the frequency function for the least-squares sum in this way
is obviously impractical. Nevertheless, it is true that the distribution of
M is independent of the curve y = f(x) and of oj, and can therefore be
calculated theoretically: it depends only on the number n of points that are
compared, and is called the x* distribution (pronounced “chi-squared™)

n.[tl-‘;'l!—l exp(ﬂM/E]

2V/2T (v/2)
where v is the number of “degrees of freedom™ of M. In the present case
we sel

FM)dM = dM = f(xHdx®.  (10.44)

v=n

because this is the number of truly independent points being compared.
In Eq. (10.44) I'(x) is the “gamma function,” which for positive integer
arguments’ is simply

C(n)=(m—1).

Consider next that y = f(x) is not known, but that a two-parameter
curve is fitted to n data points, yielding estimators a* and b*. Then one
forms again the least-squares sum M using v = f(x; a*. b*) but now the
frequency function for the M values is given by Eq. (10.44) with the n
degrees of freedom reduced by the number of estimators obtained from the
data, that is,

V=n—=2

The 2 distribution may also be used for comparing the frequency of
occurrence of a class of events with the theoretical frequency (function). Let
us consider, for example, 100 measurements of a radioactive sample, and
divide the sample into seven classes. with mean value N = 85 counts/min

5The general definition of the gamma function is
=
I'{z)= f =~ exp(—1)di:
0

for more details see any text on advanced calculus.
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'D:‘\BLE .IU'J Observed and Expected Frequencies of the Results of 100 Measurements
of a Radioactive Sample

Class 0-75 75-79 79-83 83-87 87-91 91-95 95-~c  Counts/min
0 15 1 15 15 18 12 14 Observed freq
I & = 13 12 15 16 16 13 15 Expected freq
(¢; —0p)/e? 0307 0083 0 0062 025 0077 0067 X2

and approximately equal expected frequencies; the resulting frequency of
the experimental observations o; in each class is given in Table 10.4. Next
we obtain from the data the estimators for the parameters of a Gaussian
() p*=N,(2)0" = VN, and (3) the overall normalization, namely,
Y o= Z ¢;: thus the degrees of freedom of xz are four, corresponding
to seven classes less three estimators. From the Gaussian distribution w;
calculate the expected frequencies ¢; for each class: they are also given in
Table 10.4. )

In i:omp!e{e analogy with the least-squares sum, Eq. (10.38), we form
the ¥~ sum

n

Pyl o)

5
; e
1=1 i

Note that x? is now a discrete variable, since frequencies of classes are
compazed; however, Eq. (10.44), which holds for a continuously vari-
able y =, is valid provided the number of classes n = 5 and the expected
frequencies ¢; > 5. b

For this experiment we obtain

x> = 0.846,

a‘nd we e)_(plzlincd before that v = 4. From a table of the y* distribution we
find that in 93% of the cases the x* distribution would be larger than the
r\esul: obtained here. Thus one may suspect that the data are "?00 good” a
fit to the estimated Gaussian. )

~ The x? distribution of Eq. (10.44) for different degrees of freedom
Is shown in Fig. 10.7. Tables of this distribution may be found in refer-
€nce manuals, or easily calculated in any number of computer programs
It should not be surprising that when the number of degrees of freedor-n.
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FIGURE 10.7 The frequency function for the distribution of x2, for different degrees
of freedom, All curves are normalized to the same unit area. Note that for large v the x°
distribution approaches a Gaussian.

increases v > 30, the 2 distribution approaches a Gaussian® with mean
w=v-—1/2.

10.4. ERRORS AND THEIR PROPAGATION

10.4.1. Introduction

When we perform a measurement of a physical quantity x, it can be
expected that the result obtained, x;, will differ from x: this difference
is the error of the measurement and consists of a systematic and a random
contribution. Suppose, now, that the measurement is repeated under the
same conditions n times; then the results x,, will be distributed (in most
cases) normally about a mean X with a standard deviation o, The difference
between & and the true value x is then the systematic error, and the standard
deviation o of the Gaussian is a measure of the dispersion of the results
due to the random error.

The object of the measurement, however, is the determination of the
unknown true value x; since this is not possible, we seek to find whether
¢ lies between certain limits, or whether the true value x is distributed

1t is really the distribution of /2% 2 that approaches the Gaussian with mean p =
J{2v — 1) and unit standard deviation (R. A. Fisher’s approximation).
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about some mean x* with a standard deviation o*. Note that in a rig-
orous sense, this statement is incorrect, since the unknown true value
x is not distributed, but is fixed: what we mean is that the probability,
x = x*, x > x*, etc, is given by the normal frequency function with
mean f and o = 2, the second moment of the measured data about their
mean X.

Thus, by repeating the measurement several times, it is possible in prin-
ciple to circumvent the random errors because (a) a knowledge of ¥ and
o contains all possible information about the unknown true value x, and
(b) as n increases, the second moment should decrease as 1//n and may
be made arbitrarily small. On the other hand, the systematic errors can-
not be extracted from a set of identical measurements. They can either be
estimated by the observer or be judged from a performance of the same
measurement with a different technique. Therefore, it is unadvisable to
reduce the random errors much below the expected limits of the systematic
errors. In what follows we will discuss only the treatment of random errors
and work under the assumption that the results of the measurements follow
a normal distribution.

Until now we have considered the simple case where the unknown
value x is directly measured and an error o, can be associated with the
measurement: that is, the frequency function of x depends only on one

variable:
a l fx —x 2
f(x) = ——exp| —=
V2o, 6§ 2 ( o )

Most frequently, however, the unknown value x is not directly measured,
and we distinguish two cases:

(@) x 1s an explicit function of the quantities vy, ys. ..., v, that are
measured and have with them associated errors oy, 0, .. ., 0y. Namely,
X =0, Y2400, Yn), (10.45)

and it is desi i i i
d it is desired to find the estimator x* and its standard deviation .

(b) x isan implicit function of other unknown variables i Uyl ey 7.

and o_f the quantities v, ya..... vp that are measured and have with them
associated errors o, 03, ..., g,. Namely,
G(xsuy,uz, ..., U V1e Y24 oo yu) =0, (10.46)



456 10 Elements from the Theory of Statistics

and it is desired to find the estimators x*, uj, 5. ... u’:, and the symmetric
error matrix oj; (i, j = 1,..., m + 1). Such an example was treated in

Section 10.3.3. and we know that at least m + 1 sets of measurements are
required to obtain the m + 1 estimators.

The techniques for obtaining the best estimators were discussed in
Section 10.3. In this section we will discuss how the random error of x
may be determined from knowledge of the errors of the independent vari-
ables v, ; this procedure is frequently referred to as the combination or the
propagation of the errors of the measured values yy,.

10.4.2. Propagation of Errors

Let us first assume x to be an explicit function of the measured v, as
discussed previously (Section (10.4.1)):

X = ¢(‘\‘| ) _-\.’ ..... '\'.”)- (l“.45)

By applying the maximum likelihood method, it can be shown that the
estimator x* is obtained by using the mean values, /i, of the measured vy,
{provide:d.Jr the v, are distributed normally). Here the mean values jt, are
obtained from r different measurements

Pt :
Hn = ’_ Z(,\'u);-

i=1
Thus
x*=¢ (1, 2, s Fi¥ = DU A von Biz)- (10.47)

Next we make a Taylor expansion of Eq. (10.45) about x*, through first
order

3 dJ
+\:_ ¢] (;ltz—)'z)+---+[‘—gj| (n — ¥n).
dva 1 CA i

TClearly if x is variable. all measurements v, are made 5o as to correspond to the same

point x.
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where [0¢/dy,],, means evaluation of the derivative at the point about
which we expand—that is, (ptq, (o, ..., ). We can now form the sec-
ond moment of the distribution of the x' values as they result from the
observed v,' values. The superscript i here refers to the r different sets of
measurements:

2 | ¢ e 2
oy ==) (x=x')
d i=l
i (a¢ 9
=_. _u,_ (Hl_\:i)+ "‘1‘(‘—) ,U., y
I - Y1 o ()_\‘“ _”( 1 H)
E’cb):l " SN ;
= o - I_\‘r-+ i '1‘—-'£-
(d“'] I r g(ﬁ ! J 1) (H'\-'z )” r ZI‘J(‘U" -\.;) n
d¢ 3 I .
+2|— — - — ! sk
('d,\‘| ),; (3.\'3);1 r ZI: (1 = yi) (2 = y3) +
=
. 2 L
2 _ [ 99 ) 2 (Eioﬁ ) > 09\ (99
oy =\|\—J)or+|; o"+---+2(_ 3 o
‘ (d'yl # 1 ay2/, ’ dyi );: (3}'2 )“012 - .

(10.48)

Equation (10.48) is the most general expression for the propagation of
errors. If we assume that the errors are uncorrelated, namely, 0;; = 0 when
! # j, we can obtain the results for the simplest functional relationships:

(a) Addition

X =M + y2 o LR o VYu

~ 2 7
. \/Uf+02_+"'+6”_‘ (10.49)
(b) Subtraction
r=yi—m
oy = /oy + 033. (10.50)
(c) Multiplication

X =¥V X V2 X+ X Vy
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(&)
—— =2 X Hn
vl /

Oy = \/“12 X “»"»2"'#")2+"'+0’”2 X {Lllf.l’j"')z (10.51)

" (m )2 (oz )2 (On )2
Ko == el == fonimefreg ==y
1 2 Hn

I

(d) Division
A
X ==
»2
J 1 d =
(_‘3) = (_¢) s (10.52)
ovi ), 2 ava/,  (u2)*

ol o2 (ju1)? leal % o\’
S L A1 (_) +(_-) . (1053)
' \f(uz)2 (12)* 7y M2

From the above examples we see that in general the errors are combined
in quadrature—that s, itis their squares that are added. Consequently, if the
error in one of the variables o; is large, it will dominate all other terms and
the error of x, o, will be almost equal to o;, despite good measurements
made on the other independent variables.

Our simple rule for the case of addition, Eq. (10.49), may be used to
obtain in a different way the result derived in Eq. (10.34). Let a variable
v be measured and let the mean of a set of measurements be x;, with a
standard deviation o;; if this set of measurements is repeated under identical
conditions, a new mean result X; # X; will be obtained, but let the standard
deviations be equal, that is, o; = 0j. If n such sets of measurements are
performed, the new estimator for x will be

N _
Xt =—(x1+x24---x0),
n

(i*f BS
8.?,—)Fu'

and thus
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Hence, from Eq. (10.48) or (10.49),

U:=‘/(_?):+(?)2+...+(?)2=‘/E=%. (10.54)

Namel‘y, the standard deviation of the mean of n measurements of a
.(}aqs?;laln distribution is o/\/n, where o is the standard deviation of the
individual measurements.

10.4.3. Example of Calculation of Error Propagation

As an example, let us consider an experiment to determine Stefan’s constant
b, from the relation

E =bT*,

where the following values of E and T were obtained with the indicated
standard deviations:

T (K) E (W/m?)

800(1 + 0.02) (3.04+0.3) x 10*
1000(1 + 0.02) (8.0+0.8) x 104
1200(1 =+ 0.02) (15.6 +0.6) x 104

We wish to calculate the estimator b* and its standard deviation oy.

*There are two ways to proceed in this case. We either may calculate
bj from each pf the three sets of measurements and then combine these
;zl\:i ::1 ‘o(gt?;z Il;’;;——uig,l;aal.:lt \Sveifhing each b% according to its standar4d
N g St squares in Ihﬁlt observed variables E and T,
e Wzlill d‘ mean gf T or E of the three listed measurements makes no
sens 1atsoever since each measurement is made for a different T.
fm‘tr:'trlh\;ill(ln?qow the first procedpre. and we first obtain the error on T
Eq. (1046, E,H: ?r.'ror onT. Fgrl this we s‘hould use the general expression,
differen.{ia[i.onuu‘bln?e ¢ = T 1s a leIlCFlO]’] of only one variable.® simple

gives the desired result directly
do Ag AT

ST o 3
o7 = AT e (10.55)

—_—
Bre
If we i b
we choose towrite p = T x T x T x T, we may not apply Eq. (10.51), since

these variables ;
’ S are ¢ T us y i
i ¢ correlated: use of Eq. (10.48) and or7 = o7 gives back the result of
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TABLE 10.5  An Example of a Calculation of Propagation of Errors

Sel 4 & 4 ymd *
= hH" b :
of data £ B/ h.r o(T°)/T ot )J)’H’.f
I 0.41 % 10'? 73 % 10~® 0.08 0.13
2 1.0 x 10'2 8.0 x 1078 0.08 0.13
3 20 % 102 7.8 x 10~% 0.04 0.06

We note from Eq. (10.54) that it is easier to work with relative errors, and
we thus form Table 10.5, where

I ) 5
a(b) ITe (T o(E)]"
= +
b \/ T4 E
since the errors in 7 and E are uncorrelated.
For the best estimator of b, we will use the mean of the three measure-

ments but weighed in inverse proportion to the square of their standard
deviation (see Section 10.3.3). Thus

s 1
b=(13+80+4x 7.8) x 1078 =7.75 x 107%;

for o (b) we used Eq. (10.49),

= 1 E
o(b) = 8\/03(331} +02(by) +402(b3)
or the convenient approximation
o(b) 1 a(by) i a(by) 2 a(b;):r
i ST =1\ +4 = 0.043,
b 6 [ by ] * |: by ] [ by

so that the final result 1s

b* = 7.75(1 £ 0.043) x 10~ W/°K*-m?,

10.4.4. Evaluation of the Error Matrix

In the two previous sections we have discussed the case where only
one unknown variable x was sought. We will now consider the random
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errors when several unknown variables are simultaneously estimated or
measured.

When only one variable is measured, we know how to obtain from the
data the second moment about the mean

If now p variables are simultaneously measured in an experiment, we
must form the p( p + 1)/2 second moments about the mean: for example
if we measure x, y, and z. we must calculate the six expressions

] n ) i
Oxx = ” zl:(.\' =X N X — X ); Oyy =+ | Ogg=iness
=
B | " ) -
Oyy = ; I 1(.\ —Xxi)y—y)= Oyl (10.56)
=
Oy = ve= O-x. (;.\,: = e = Oy,

(In this notation, the dimensionality of : [ i
; sionality of a quantity o, is th: e product
pg. Hence, o2 has the same dimensi q. . ¥ %o thal' Of theproduct
4 » 0y has th same dimensions as o,,. We avoid the notation
05 el be‘cause it misleads one to think that o, for example. is positive
Llehnnc..) If the distribution of the variables x, v, and z is normal, then
these six moments form the symmetric error matrix; if the variables are
uncorrelated, the matrix is diagonal.
E.(.Ieurly. the error matrix must be known if it is desired to apply
“q. (10.48). Consider. for example, that from the measured variables x. y

and 7 we wis ain a ne ' i .
\:1hd 2 we wish to obtain a new unknown u and its standard deviations o (1)
‘here .

u=a¢olx. v.z). (10.57)

Then the values of o2 that wer i i

o 110 fs 0]:: of 1h_111. were obtained from the data with the help of

" -20) are substituted in Eq. (10.48) along with the partial derivatives
- which are obtained from Eq. (10.57).

' Conversely, if the frequency function of the three variables ., v. and -

and thus of u, is known, -

f) = flo(x, v, x)]
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it is possible to calculate theoretically the elements of the error matrix
through the usual expression

po(x, y) = jf f(x,v,2)xydxdydz (10.58)
or
Ha(x,y) = /f fx, vy, 2)(y —x)(py = y)dxdydz,

where
axy = pa(x, y), etc.

In most practical applications, however, it is difficult to use Eq. (10.56)
or (10.58). Equation (10.56) may not be usable because the unknown vari-
ables may not be measured directly (although they are measured implicitly);
also, extensive data are required to yield meaningful results, and the cal-
culation is cumbersome. Equation (10.58) may not be usable because the
multidimensional integrals are frequently too difficult to calculate. Instead,
the method of maximum likelihood provides an easy way for obtaining the
error matrix.

As already discussed in Section 10.3, if the set of data x;, yi, ..., Zi
has been measured, and the estimators for the m unknown variables
(2 T Fe— 6,, are sought, we may form the likelihood function

Loy, Xes vv Xz YL Vgiivcs Yy Zhs Z2no s 2ns Bas Bpis « -+ Om)
=f(11.}1. ..-.:]:B{J,Gb, ...,9,,,)_}[(«1'3,}'2. -.--:2:99.6b. - ..9};;)"'
Xf(-\’;;-}‘n----‘Zn;ea-gb ----- Om),
where f is the frequency function of the measured variables and is usually
assumed to be a product of Gaussians. Then the estimators 6. 6, .. .. O
are given by the values that simultaneously maximize L, namely,
oL ] oL :|
30 12 0% ....0n 36m Jox 0z....00

""" m m

=), (10.59)

requiring the solution of m coupled equations. Equation (10.41) is a simple
example of such a solution of Eq. (10.59). We note that the number of
independent data points taken, n, must be larger than or equal to m.
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The elements of the error matrix can be obtained from the inverse of the
matrix

92w
Hy = — ] . 10,
T (10.60)

H*

where the second-order partial derivatives must be calculated at the values
of the estimators, and W = log L. We have

o = (H);,
where the rule for matrix inversion is
i+ Det ( ji minor of H)
Det H

and the minor is the matrix resulting from H when the jth row and ith
column are removed; obviously, the inverse matrix does not exist unless
Det H # 0.

We will now apply this method of obtaining the error matrix to the simple
example treated in Section 10.3.3. The measured variables are x and y, and
estimators are sought for the variables a and b; we assume that x is known

exactly and that y is distributed normally for each measurement, and related
to x through

H™Y)i = (-1

(10.61)

v =a+ bx.

Using Eq. (10.37), we have

L n l l ) j
=] mme"p —E[J‘f — V(xi:a. b))”

!

and
" n i n 9 ( + b ) 2
W= logl = < lba(2)< s Yi — 4T ox)
g > og(2m) Zlogcr, 5 Z[ = .
i=1 i=1 f
To simplify the calculations we assume o = 05 = - - - = ay,, so that
_PWn PW Y x P’W Y x}
da* o2’ dadb o2’ T T o2
Hence

H l n Z‘ri
== ) ) 2
o? [Tx T Ha
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and

Det H = UL [u 3 d) - (Z\,)] ;

= = 5 L) — L . (10.63)
ny (x7)—(Xxi) L™ ¥ n
which gives the results stated in Eq. (10.43): the indices v, p stand for
aorb.

a
|
E
Il

10.4.5. The Monte Carlo Method

It is clear that the calculation of the propagation of errors may become
extremely involved, especially when the frequency functions of the vari-
ables cannot be expressed analytically and when intermediate processes of
statistical nature take place. It is then preferable to use computer programs
based on the so-called “Monte Carlo™ method.

By this technique, we follow a particular event through the sequence
of processes it may undergo. For each process, all possible outcomes are
weighed according to the frequency function and divided into x classes of
equal probability. Then, from a table of these classes, one class is selected
at random: for example, by looking up a table of x random numbers.
The outcome of this process is incorporated in the progress of the event
until a new decision point is reached, when again random selection is
made. Thus, at the end of the sequence of all processes, certain final con-
ditions will be reached from the initial conditions with which we started
and through the intermediary of the random choices made at each decision
point.

We follow in this fashion several events, always starting with the same
initial conditions, but because of the random choices, the final conditions
will be spread over some range. If enough events have been followed
through, we are able to find the frequency function of the combined process
and of its parameters, namely, the mean and the standard deviation for the
final conditions that result from a given set of initial conditions.

For more discussion, including examples with accompanying com-
puter codes, the reader is referred to the material listed at the end of this
chapter.
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10.5. THE STATISTICS OF NUCLEAR COUNTING

In many exper.imcnls related to nuclear physics, we count the particles
or p}}(}tons emitted in the decay of a nucleus. Usually only a very smal‘l
_fraclmn of the total sample undergoes such decay. The decay of one nu.n:[eus
is a complgtely random phenomenon, yet from the number of counts in ;1
given time interval, we may determine the decay probability of this species
of nuclei or unstable particles. We have already made use of these conce t\"
in Chapters 8 and 9, | -

10.5.1. The Frequency Function for the
Number of Decays

We start with the as§umption that the decay of one nucleus is purely ran-
dom an.d the probability (unnormalized) for decay in a time interval Ar is
proportional to Az and some constant 4 with dimensions of inverse time?-

pd = MAt. (10.64)

If we‘}‘mve a sample of N nuclei, since the presence of one nucleus does
not affect the decay of another, the probability that one nucleus out of the
sample of N nuclei will decay, in time At. is

P(1, Ar) = ANAtL. (10.65)

quat]()n (10.65) is completely analogous to Eq. (10.12) of Section 10.2.6
which leads to the Poisson distribution: the only difference is lhat' Iilé
p’:”‘_{"” Nt of Eq. (10.65) is the equivalent of the number of trials »
of Eq. (10.12). Consequently the probability (frequency function) for

obtaining n decays in a time interval ¢ is
f,—}.;'\-'F (N At )
n!

The first moment of E i i
q. (10.66) (in the discrete unknown vari :
8 e et B 10 nknown variable n), as

Pn,t)=

; (10.66)

e n=AN1. (10.67)
E Sehuai !

ugn'm- Suhv;.ieldler, 1905; this assumption has been proven absolutely correct from the
“ement of experiment with the deductions following f 3 ) as dev i

- i it wwing from Eq. (10.64) as developed in



