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Poisson Statistics 

MIT Department of Physics 
(Dated: July 8, 2004) 

In this experiment you will explore the statistics of random, independent events in physical mea­
surements. The random events used in this study will be pulses from a scintillation detector exposed 
to gamma rays from a radioactive source. The measurement will be compared to Poisson­Gaussian 
distributions which often govern the spread of physical data. A computer simulation using Monte­
Carlo techniques will provide comparison for different numbers of events and give a demonstration 
of “normal” statistical fluctuations. This comparison technique is widely used in modern physics. 

1. PREPARATORY PROBLEMS 

1. Describe how a scintillation counter works, starting 
from the entrance of an energetic charged particle 
or photon, and ending with an electrical pulse at 
the output of the photomultiplier. Why are subse­
quent signals independent? 

2. Suppose the mean counting rate of a certain detec­
tor of random events is 3 counts per second. What 
is the probability of obtaining zero counts in a one­
second counting interval? What is the most likely 
interval between successive pulses? 

3. Given the formula for	 the Poisson distribution 
(Equation 2), prove each of the following: 

• < x >= µ 

• < x2 >= µ(µ + 1) 

• < (x− µ)2 >= µ 

where < x > signifies the mean value of x. 

4. Plot the frequency distribution of counts when the 
average counts per interval is 1. 

5. Puzzler:	 Some experiments have painfully slow 
counting rates that try the experimenter’s soul and 
make him or her question the performance of even 
the most reliable equipment. Suppose you are run­
ning an experiment that yields no counts in 11 
hours and two counts in the 12th hour. Give a 
quantitative answer to the question: what is the 
likelihood that the equipment is malfunctioning? 

2. THEORY OF POISSON STATISTICS 

A sequence of independent random events is one in 
which the occurrence of any event has no effect on the 
occurrence of any other. One example is simple radioac­
tive decay such as the emission of 663 KeV photons by 
a sample of 137Cs. In contrast, the fissions of nuclei in a 
critical mass of 235U are correlated events in a “chain re­
action” in which the outcome of each event, the number 
of neutrons released, affects the outcome of subsequent 
events. 

A continuous random process is said to be “steady 
state with mean rate µ” if 

X
lim = µ	 (1)

TT→∞ 

where X is the number of events accumulated in time T . 
How can one judge whether a certain process does, in­

deed, have a rate that is steady on time scales of the 
experiment itself? The only way is to make repeated 
measurements of the number of counts xi in time inter­
vals ti and determine whether there is a trend in the 
successive values of xi/ti. Since these ratios are certain 
to fluctuate, the question arises as to whether the ob­
served fluctuations are within reasonable bounds for a 
fixed rate. Clearly, one needs to know the probability 
distribution of the numbers of counts in a fixed interval 
of time if the process does indeed have a steady rate. 
That distribution is known as the Poisson distribution 
and is defined by the equation: 

Pp(x;µ) = 
µxe−µ 

(2) 
x! 

which is the probability of recording n counts (always an 
integer) when µ (generally not an integer) is the expected 
number, the mean rate times the counting time interval. 
It is easy to show that the standard deviation of the 
Poisson distribution is simply 

√
µ, that is, the square 

root of the mean. Derivations of the Poisson distribution 
and its standard deviation are given in References [1, 2]. 
You should study and understand Binomial, Poisson and 
Gaussian distributions and their limits of application. 

3. EXPERIMENT 

In the first part of this experiment you will set up 
a scintillation counter, expose it to gamma rays from 
a radioactive source (and the ubiquitous cosmic rays), 
and record the frequency distribution of the numbers of 
counts in equal intervals of time. This will be repeated 
for four situations with widely different mean count rates, 
approximately 1, 5, 10, and 100 counts per second. The 
“real” average rate you know only at the end but you 
should aim for these values within 25%. The experi­
mental distributions and their standard deviations will 
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FIG. 1: The setup for measuring the number of counts from a 
random process (radioactive decay) in a given time interval. 
An oscilloscope (not shown) is used to monitor the proper 
functioning of the system. 

be compared with the theoretical distributions and their 
standard deviations. 

Later, you will generate Poisson distributions by 
Monte Carlo simulations on a Junior Lab PC and will 
also compare them with the ones produced by nature in 
your counting measurements. 

3.1. Setup to Measure Poisson Statistics 

Set up the scintillation counter as shown in Figure 1. 
Expose the detector to the gamma rays from a 137Cs 
or 60Co laboratory calibration source (a 1/2�� × 5�� plas­
tic rod with the source embedded in the colored end). 
The voltage applied to the photomultiplier should be ≈
+1000 volts. The output of the photomultiplier is fed to 
the “INPUT” connector on charge­sensitive preamplifier. 
Use the oscilloscope to record the voltage waveform taken 
from the output of the preamplifier and draw it in your 
lab notebook. Note especially the rise and decay time of 
the signal as well as the peak amplitude and polarity. 

The output of the preamplifier is then connected to 
the “INPUT” (connector on the back or front of the am­
plifier). The amplified signal should be taken from the 
“UNIPOLAR OUT” connector on the front of the am­
plifier, and fed to the “POS IN(A)” connector on the 
scaler. Set the amplifier to have a moderate gain and for 
positive pulses. Start with the scaler’s discriminator set 
at it’s lowest value (0.1V). Set the scaler to repeatedly 
acquire for 5 seconds, display the result and then start 
again. 

Note: Throughout Junior Lab, you should pay close at­
tention to the polarities of applied and detected voltages. 
Incorrectly setting the polarity on an oscilloscope trigger 
can be very frustrating!!!. 
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3.2. Procedure 

Examine the output of the amplifier on the oscil­
loscope (sweep speed ∼ 1µsec/cm, vertical amplitude 
∼ 1 volt/cm) to confirm the proper performance of the 
measurement chain. Adjust the gain of the amplifier to 
produce signal pulses of ∼ +3 volts. If you trigger the 
scope on the “rising edge” of the pulses and set the trigger 
level to ∼ +3 volts, you should see a signal which starts 
on the left­hand side of the scope display at ∼ 3 volts, 
rises to a maximum of about ∼ 5 volts, goes negative and 
finally levels off at zero. If you also set the discriminator 
on the counter to 3 volts, there should be an approxi­
mate one­to­one correspondence between pulses counted 
and pulses displayed. Ask for assistance on this step if 
you are unfamiliar with the operation of an oscilloscope. 

Incidently, even without a ‘check source’ nearby, you 
should see signals due to “cosmic­rays” at the rate of 
≈ 1cm−2min−1 

You can control the counting rate by adjusting the dis­
tance of the source from the scintillator, by varying the 
high voltage supplied to the photomultiplier, varying the 
gain of the amplifier, or changing the threshold level of 
the discriminator. Arrange things to yield three different 
mean count rates of approximately 1 sec−1, 4 sec−1, 10 
sec−1, and 100 sec−1 . 

Record your instrumental settings and prepare 
tables in your lab notebook for recording the 
count data in neat and compact form. 

At each of these approximate rates, record the counts 
for jmax=100 repeated one­second intervals directly into 
your lab notebook. For each of the four settings, record 
the number of events in one consecutive run. 

3.3. Analysis 

The following analysis requires the use of repetitive 
arithmetic on the collected data set. You could use either 
Matlab or any other preferred tool on the MIT server. 

a) For each of the four runs calculate and plot the cu­
mulative average, rc(j), of the rate as a function of 
the sequence number, j, of the count. By “cumu­
lative average” is meant the quantity �i=j 

i=1 xi 
rc(j) = �i=j 

. (3) 
tii=1 

where xi is the number of counts detected in time 
ti. For a process which is truly steady with mean 
rate µ, rc(j) should converge to µ in the asymp­
totic limit. Include error bars to demonstrate con­
vergence. 

b) Calculate the mean and standard deviation of each 
of the three 100­trial distributions and compare 
to your own measurements. Make a plot of the 
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FIG. 2: A frequency distribution of observed numbers of 
counts. The renormalized Poisson distribution for the ob­
served mean value is also plotted. 

“number of counts” on the horizontal axis and data 
points for the “frequency” of occurrence for each 
bin on the vertical axis. Be sure to include error 
bars. 

c) Plot the data with errors as in Figure 2 and using 
the mean rate just determined, calculate the Pois­
son frequency distribution (renormalized by multi­
plying by the total number of readings). Plot both 
distributions on the same axes for ease of compar­
ison. 

d) For the observed distribution with the lowest mean 
rate, take the highest deviation from that mean and 
test whether you might be justified in concluding 
that the counter was malfunctioning. Remember 
that there were 100 opportunities for such a devia­
tion to occur. 

e) For large values of µ you can use the Gaussian ap­
proximation to the Poisson formula as given by the 
relation 

/2µlim p(x;µ) = √
2
1 
πµ

e−(x−µ)2 . (4) 
µ→∞ 

Compare the Poisson and Gaussian distributions 
for µ = 4 and 10. 
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3.4. Simulating Poisson Statistics Using Matlab 

There are two Matlab scripts entitled ‘poisson.m’ and 
‘poissonsim.m’. 

For ex­ample type ‘poissonsim(3,20)’ which 
will generate a 20 sample population with a mean 

of 3. The blue curve represents the theoretical poisson 
distribution while the red dots represent the simulated 
sample population. The ’poissonsim’ function will output 
two vectors: the frequency of each rate (i.e. the counts in 
each bin shown in the graph) and the count rates for all 
of the trials. 

The following instructions apply to either method. 

1. Generate 1000­trial distributions for your MEA­
SURED mean rates (≈1,4,10,1000). 

2. Next, generate ten 100­trial distributions for each 
of the four mean counts you obtained in the ex­
perimental section using the scintillation counters. 
Record the mean values and standard deviations 
for each set of 10 distributions. 

3. Compare the Monte Carlo­generated Poisson distri­
butions with the experimental ones you obtained 
with the scintillation counter. The mean of the 
standard deviations should converge (within some 
statistical error) to the square root of the mean that 
is input to the Poisson generator. 

4. Determine the error on µ and σ from the scatter of 
the ten distributions. 

4. STATISTICAL EXERCISE 

1. For the hundred measurements at ≈4 Hz, evaluate 
the average and the variance. Compare the results 
with the high rate (≈100 Hz) run. Are they con­
sistent? 

2. Plot the distributions of your measured data sets 
and compare to Poisson distributions of your ex­
perimental means. Are the variances in agreement 
with the theoretical expectation? 

3. Fit the ≈4Hz data set to both gaussian and poisson 
functions. Which is preferred? At what confidence 
level? 

5.	 SUGGESTED THEORETICAL TOPICS FOR

ORAL EXAM


1. The Poisson distribution, its origin from the bino­
mial distribution and the limits of its application. 

2. The Gaussian approximation to the Poisson distri­
bution P (m, n) for m � 10. 
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3. The differential distribution in the time lag between 
successive random pulses that occur at a fixed av­
erage rate. 

[1] P. Bevington and D. Robinson, Data Reduction and Er­
ror Analysis for the Physical Sciences (McGraw­Hill, 
2003), 3rd ed. 

[2] A. Melissinos and J. Napolitano, Experiments in Modern 
Physics (Academic Press, 2003), 3rd ed. 

APPENDIX A: MONTE CARLO GENERATION 
OF A RANDOM VARIABLE 

Suppose we have a source of random numbers with a 
uniform distribution from 0 to 1. If we represent the uni­
form distribution by q(y), so that q(y�)dy� is the prob­
ability that the random number y lies between y� and 
y� + dy�, then obviously q(y�) = 1. The problem is how 
to convert a given random number y from this uniform 
distribution into a random variable x with a specified dis­
tribution p(x�) such that p(x�)dx� is the probability that 
the variable x will turn up with a value in the infinites­
imal interval between x� and x� + dx�. We must find a 
relation between the distributions of y and x such that 
p(x�)dx� = q(y�)dy� = dy�. 

To do this we compute, analytically if possible but oth­
erwise numerically, the integral 

x 

P (x) = p(x�)dx� (A1) 
−∞ 

which is the probability that the random variable will 
turn up with a value in the interval between −∞ and x. 
From this definition is follows that 

lim (P (x)) = 1 (A2) 
x→∞ 

since the probability that the random variable will turn 
up with some value is unity. Given the random number y, 
we set y = P (x) and solve for x. To find the distribution 
of the resulting value of x we differentiate this expression, 
using the rule for differentiating a definite integral with 
respect to its upper limit, and obtain dy = dP (x) = 
p(x)dx. Thus the distribution of x selected in this way is 
identical to the one specified. 

Figure 3 shows how this works graphically. From the 
figure it is evident that a horizontal line at a random 
position yi on the y­axis is more likely to intersect the 
P (x) function where it is steeper than elsewhere; i.e., 
where the differential probability is larger than elsewhere. 

The Poisson probability, being a discontinuous func­
tion, is handled in a similar way, but with a summation 
rather than an integral. Given a value of µ <88 and a 
random number y, the Poisson Simulator find the small­
est value of x for which P (x;µ) > y, where P is defined 

FIG. 3: Illustration of Monte Carlo selection of a random 
variable with a specified differential probability distribution 
is shown above. yi is a random number between 0 and 1. xi 

is the value of the variable for which the integral probability 
distribution equals yi. 

by the formula 

x� =x

Pp(x;µ) = p(x�;µ) (A3) 
x� =0 

in which p(x�;µ) is the Poisson probability specified 
above. That value of x is the desired Poisson variate. 

Inspect the Matlab .m files where the algorithm is de­
scribed in more detail. 


