
1 Shot Noise

1.1 History and Background

Shot noise is due to the corpuscular nature of transport. In 1918, Walter Schottky discovered

Shot noise in tubes and developed Schottky’s theorem. Shot noise is always associated with

direct current flow. In fact, it is required that there be dc current flow or there is no Shot

noise. Electrical currents do not flow uniformly and do not vary smoothly in time like the

standard water flow analogy. Current flow is not continuous, but results from the motion of

charged particles (i.e. electrons and/or holes) which are discrete and independent. At some

(supposedly small, presumed microscopic) level, currents vary in unpredictable ways. It is

this unpredictable variation that is called noise.

If you could “observe” carriers passing a point in a conductor for some time interval you

would find that a “few” more or less carriers would pass in one time interval versus the next.

It is impossible to predict the motion of individual electrons, but it is possible to calculate the

average net velocity of an ensemble of electrons, or the average number of electrons drifting

past a particular point per time interval. The variation about the mean value or average of

these quantities is the noise. In order to “see” Shot Noise, the carriers must be constrained

to flow past in one direction only. The carrier entering the “observation” point must do so

as a purely random event and independent of any other carrier crossing this point. If the

carriers are not constrained in this manner then the resultant thermal noise will dominate

and the Shot Noise will not be “seen”. A physical system where this constraint holds is a pn

junction. The passage of each carrier across the depletion region of the junction is a random

event, and because of the energy barrier the carrier may travel in only one direction. Since

the events are random and independent, Poisson statistics describe this process.

To try and find the statistics of this process will require a physical model to analyze,

therefore we will consider an LC tank circuit.

1.2 Derivation of Shot Noise

As an illustration think about an LC tank circuit being charged through an ideal switch (such

as an ideal pn junction diode) from a battery with a voltage V . Now the switch is capable

of turning on and off in such a short time interval that only single electrons pass through to

the tank circuit. Therefore the current pulse is negligible. Also the switch randomly turns

on and off such that the current pulses are independent and uncorrelated. Then we can
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approximate the current flowing into the tank circuit as a spike of current or delta function

I(t) =
∑

j

q δ(t − tj) , (1)

where the tj ’s are the random arrival times of the electrons. What we know about tj is that

on average there should be Ī/q of them per unit of time following the definition of current.

Now, what does one of these current pulses do to the LC circuit? A short pulse of

current is not going to go through the inductor, so it must end up charging the capacitor.

This will produce a rapid change in the voltage on the capacitor whose magnitude is

δV = q/C . (2)

If initially the LC circuit contained no energy (i.e. voltage and current identically zero),

the first pulse of current would start the circuit oscillating with a voltage amplitude of

δV . Subsequent pulses of current would arrive at unpredictable times within the period of

oscillation, so that some pulses might increase the amplitude of the oscillation and others

might decrease the amplitude. Let us write the voltage on C as

V (t) = <
[
Va exp

(
i t/

√
LC

)]
, (3)

where Va is the complex-valued amplitude of the oscillation. Then the effect of the arrival

of a current pulse is to translate Va in the complex plane by a distance δV but in a random

direction. Thus, Va will execute a random walk in the complex plane. For the present

purposes, the significant feature of a random walk is that the average value of Va is zero, but

the actual value is almost never zero. That is, the spikes in the current through the switch

will keep the LC tank circuit excited to some level. This is a characteristic feature of noise.

If you are familiar with the theory of random walks, you will have noticed that |Va| can

grow without limit. This unphysical result is due to our having neglected any possibility of

back-action of the LC circuit on the ideal switch/battery system. However this is necessary

for the physics of Shot noise since the electrons must be restricted to travel in one direction

only and not retrace their path. If the expectation of the electron was equally likely to go

either direction then Thermal noise would dominate.

Now lets us suppose that the switch will close for a long time and open for a short

time, so that the current pulses are of a long duration compared to the resonant frequency

of the LC circuit. Such pulses are not going to excite much of an oscillation in that circuit.

Thus, there is a significant difference in the properties of the Shot noise, depending upon the

duration of the current pulses. This is clearly a property of the noise-producing component,
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rather than of the LC tank circuit. The underlying concept is that the noise is distributed

over a spectrum of frequencies, and the form of the distribution function, or noise spectrum

is the key property.

A physical switch that has this property is a pn junction diode. It is well known that

semiconductor diodes exhibit Shot noise. This is because the built-in potential across the

depletion layer of the pn junction is high enough to prevent the majority carriers from

returning once they cross the junction. The transit time across the depletion region is the

key time constant for the diode and the carrier arrival is an independent and random event.

We will examine the mathematical machinery by which one evaluates the noise spectrum,

and then apply it to find Shot and Thermal noise. The mathematical object which allows us

to characterize the duration of the current pulse is called the autocorrelation function and is

defined by

RI(t
′) = lim

T→∞
1

T

∫ T/2

−T/2

I(t)I(t + t′) dt . (4)

The Wiener-Khintchine theorem states that the noise spectrum is the Fourier transform of

the autocorrelation function:

SI(f) = 2

∫ ∞

−∞
RI(t

′) e−i 2πft′ dt′ , (5)

where SI(f) is the one-sided power spectral density (PSD) and physically for this case is the

mean-square current fluctuation in a unity bandwidth, SI(f) = i2/∆f . These definitions

follow from the facts that only real, positive frequencies are used in circuit analysis and that

for a noise process the mean is always zero so that the variance is equal to the mean-square

value. The two-sided spectral density is an even function of frequency so that S(f) = S(−f)

which leads to the fact that S(f) = 2S(f), for f ≥ 0 and provides the factor of 2 in the

Fourier transform (5).

Now, we apply (4) to (1) to find the autocorrelation of delta-function current pulses.

RI(t
′) = lim

T→∞
q2

T

∑
k

∑
k′

∫ T/2

−T/2

δ(t − tk)δ(t − tk′ + t′) dt ,

= lim
T→∞

q2

T

∑
k

∑
k′

δ(tk − tk′ + t′) , (6)

where the properties of the delta function are used to evaluate the integral. Now, consider the

terms in the double summation above. In the case where the summation indices are k = k′

which means the arrival times are equal tk = tk′, we just have δ(t′), and if there are N values
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of tk such that −T/2 < tk < T/2, these terms will contribute Nδ(t′) to the autocorrelation

function. For tk 6= tk′ , the delta functions will occur at randomly distributed, nonzero values

of t′. We argue that, with suitable averaging, the contributions from these delta functions

to the Fourier transform in (5) will vanish. (Note, however, that entire textbooks have been

written on the details that are hidden in the phrase “suitable averaging.”) So, the part of

the autocorrelation function which remains is given by

RI(t
′) = qĪ δ(t′) , (7)

where we have used N/T = Ī/q with Ī being the dc current.

Taking the Fourier transform (5): ( F{δ(t)} ↔ 1 ); we find Schottky’s theorem

SI(f) = 2qĪ . (8)

The spectrum is uniform and extends to all frequencies. This kind of spectrum is called

white and many textbooks use the symbol SI(0) to mean no frequency dependence.

Now, let us consider the case for the current pulses being of significant duration. In

particular, suppose

I(t) =
∑

k

q s(t − tk) , (9)

where s(t) is a square current pulse of duration τ , as illustrated in Figure 1. The auto-
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Figure 1: A square current pulse of duration τ and its autocorrelation function

correlation function can be found by a similar argument to that which we made for the

delta-function case earlier and leads to

RI(t
′) = qĪ s(t) ∗ s(t + t′) , (10)

4



where s ∗ s′ is the autocorrelation function of s, and is shown in Figure 1. The Fourier

transform of a single triangle is:

F
{

1 − |t′|/τ : |t′| ≤ τ

0 : |t′| > τ

}
↔ τ

[
sin(πfτ)

πfτ

]2

.

When the pulses repeat, as is our case, then the transform is scaled by 1/τ . At this point we

need to remember that the Fourier transform of a repeating series of pulses with constant

period and constant pulse-width, leads to a discrete spectrum with an average or dc value

of Ī and harmonics at n/τ ; n = 1, 2, ... . There would be no noise produced from dc out to

1/τ . This is clearly wrong! The key to finding the right answer is that the electrons arrive

at random times (i.e. random periods) and with random transit times (i.e. random τ).

Then we should take the Fourier transform of all the possible cases and ensemble average

the results. However it is easier to ensemble average the τ ’s → τ̄ and then apply the Fourier

transform. This is equivalent since the Fourier transform is a linear operation. Now applying

(5) yields

SI(f) = 2qĪ

[
sin(πfτ̄)

πfτ̄

]2

. (11)

This equation gives the same result as (8) at low frequencies, but has a cutoff at f = 1/τ̄ as

shown in Figure 2.
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Figure 2: The frequency spectrum of the autocorrelation function for Shot noise

This figure of the spectrum is exaggerated because τ̄ is the mean transit time of the

electrons crossing the depletion region of the diode (≈ 10 ps), which means the cutoff fre-

quency is about 100 GHz. Therefore the approximate equation (8) which implies that Shot

noise is independent of frequency is good for almost all integrated circuit design. While the

frequency distribution of SI(0) = 2qĪ is white, the amplitude distribution is Gaussian due

to the Central Limit Theorem (random walks using a very large number of steps).
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1.3 van der Ziel’s Derivation of Shot Noise

To find the fluctuation, first define N as the number of carriers passing a point in a time

interval τ at a rate n(t). Then

N =

∫ τ

0

n(t) dt , (12)

N̄ = n̄ τ , (13)

where N̄ and n̄ are ensemble averages and this results follows from the fact that time averages

equal ensemble averages (the Ergodic theorem). If we define a new random variable ∆N

such that

∆N = N − N̄ , (14)

then we have removed the “d.c.” term leaving only the fluctuation. If we also define the

random process Xτ then for sufficiently large τ we have

Xτ =
∆N

τ
, (15)

Note that for a Poisson process N̄ = varN = ∆N2 and n̄ = varn, therefore

X2
τ =

∆N2

τ 2
=

var N

τ 2
=

N̄

τ 2
=

n̄τ

τ 2
=

var n

τ
, (16)

so

varn = τ X2
τ . (17)

Now applying the Wiener-Khintchine theorem yields

Sn(0) = lim
τ→∞

2τ X2
τ = 2 varn . (18)

To convert to current we prove Schottky’s theorem. The spectral intensity of the fluc-

tuating current I(t) of average Ī is SI(0) = 2qĪ.

Proof: Poisson statistics apply, therefore varn = n̄. To get current from carrier flux,

multiply by the carrier charge q. So

I(t) = qn(t) Hence Ī = qn̄ . (19)

Therefore

SI(0) = q2Sn(0) = 2q2varn = 2q2 n̄ = 2qĪ , (20)

where SI(0) is the spectral density of the current fluctuations.
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