Chapter 3
Place, time, and motion

Then, just for a minute. . . he turned off the lights. . . . And then while we all still
waited I understood that the terror of my dream was not about losing just vision,
but the whole of myself, whatever that was. What you lose in blindness is the
space around you, the place where you are, and without that you might not exist.
You could be nowhere at all.

— Barbara Kingsolver, Animal Dreams, 1990

Where is Mars? The center of our Galaxy? The brightest X-ray source? Where,
indeed, are we? Astronomers have always needed to locate objects and events in
space. As our science evolves, it demands ever more exact locations. Suppose,
for example, an astronomer observes with an X-ray telescope and discovers a
source that flashes on and off with a curious rhythm. Is this source a planet, a
star, or the core of a galaxy? It is possible that the X-ray source will appear to be
quite unremarkable at other wavelengths. The exact position for the X-ray
source might be the only way to identify its optical or radio counterpart. Astron-
omers need to know where things are.

Likewise, knowing when something happens is often as important as where it
happens. The rhythms of the spinning and orbiting Earth gave astronomy an
early and intimate connection to timekeeping. Because our Universe is always
changing, astronomers need to know what time it is.

The “fixed stars™ are an old metaphor for the unchanging and eternal, but
positions of real celestial objects do change, and the changes tell stories. Planets,
stars, gas clouds, and galaxies all trace paths decreed for them. Astronomers
who measure these motions, sometimes only through the accumulated labors of
many generations, can find in their measurements the outlines of nature’s
decree. In the most satisfying cases, the measurements uncover fundamental
facts, like the distances between stars or galaxies, or the age of the Universe, or
the presence of planets orbiting other suns beyond the Sun. Astronomers need to
know how things move.
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Any problem of geometry can easily be reduced to such terms that a knowledge
of the lengths of certain straight lines is sufficient for its construction.
— Rene Descartes, La Geometrie, Book I, 1637

Descartes’ brilliant application of coordinate systems to solve geometric prob-
lems has direct relevance to astrometry, the business of locating astronomical
objects. Although astrometry has venerably ancient origins,' it retains a central
importance in astronomy.

3.1.1 Three-dimensional coordinates

Iassume you are familiar with the standard (x, y, z) Cartesian coordinate system
and the related spherical coordinate system (r, ¢, 0), illustrated in Figure 3.1(a).
Think for a moment how you might set up such a coordinate system in practice.
Many methods could lead to the same result, but consider a process that consists
of four decisions:

I. Locate the origin. In astronomy, this often corresponds to identifying some distinctive
real or idealized object: the centers of the Earth, Sun, or Galaxy, for example.

2. Locate the x—y plane. We will call this the “fundamental plane.” The fundamental
plane, again, often has physical significance: the plane defined by the Earth’s equator —
or the one that contains Earth’s orbit — or the symmetry plane of the Galaxy, for
example. The z-axis passes through the origin perpendicular to the fundamental plane.

3. Decide on the direction of the positive x-axis. We will call this the “reference direc-
tion.” Sometimes the reference direction has a physical significance — the direction
from the Sun to the center of the Galaxy, for example. The y-axis then lies in the
fundamental plane, perpendicular to the x-axis.

4. Finally, decide on a convention for the signs of the y- and z-axes. These choices
produce either a left- or right-handed system — see below.”

The traditional choice for measuring the angles is to measure the first coor-
dinate, ¢ (or 4), within the fundamental plane so that ¢ increases from the
+x-axis towards the +y-axis (see Figure 3.1). The second angle, 0 (or ), is
measured in a plane perpendicular to the fundamental plane increasing from
the positive z axis towards the x—y plane. In this scheme, ¢ ranges, in radians,
from 0 to 27 and 0 ranges from 0 to 7. A common alternative is to measure
the second angle (f in the figure) from the x—y plane, so it ranges between —/2
and +7/2.

' Systematic Babylonian records go back to about 650 BC but with strong hints that the written
tradition had Sumerian roots in the late third millennium. Ruins of megalithic structures with clear
astronomical alignments date from as early as 4500 BC (Nabta, Egypt).
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Fig. 3.1 Three-dimensional
coordinate systems.

(a) The traditional system
is right-handed.

(b) This system is left-
handed, its axes are a
mirror image of those in
(a). In either system one
can choose to measure the
second angle from the
fundamental plane (e.g.
angle f) instead of from
the z axis (angles 0 or ¢).

a

Fig. 3.2 A spherical
triangle. You must
imagine this figure is
drawn on the surface of a
sphere. A, B, and C are
spherical angles; a, b, and
c are arcs of great circles.
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The freedom to choose the signs of the y- and z-axes in step 4 of this
procedure implies that there are two (and only two) kinds of coordinate systems.
One, illustrated in Figure 3.1a, is right-handed: if you wrap the fingers of your
right hand around the z axis so the tips point in the + ¢ direction (that is, from
the +x axis towards the + y axis), then your thumb will point in the + z direction.
In a left-handed system, like the (r, A, C) system illustrated in Figure 3.1 (b), you
use your left hand to find the + z direction. The left-handed system is the mirror
image of the right-handed system. In either system, Pythagoras gives the radial

coordinate as:
r=/x2+32 + 22
3.1.2 Coordinates on a spherical surface

It is one of the things proper to geography to assume that the Earth as a whole is
spherical in shape, as the universe also is. . .
— Strabo, Geography, 11, 2, 1, ¢. AD 18

If all points of interest are on the surface of a sphere, the » coordinate is
superfluous, and we can specify locations with just two angular coordinates like
(¢, 0) or (4, B). Many astronomical coordinate systems fit into this category, so it
is useful to review some of the characteristics of geometry and trigonometry on
a spherical surface.

1. A great circle is formed by the intersection of the sphere and a plane that contains the
center of the sphere. The shortest distance between two points on the surface of a
sphere is an arc of the great circle connecting the points.

2. A small circle is formed by the intersection of the sphere and a plane that does not
contain the center of the sphere.

3. The spherical angle between two great circles is the angle between the planes, or the
angle between the straight lines tangent to the two great circle arcs at either of their
points of intersection.

4. A spherical triangle on the surface of a sphere is one whose sides are all segments of
great circles. Since the sides of a spherical triangle are arcs, the sides can be measured
in angular measure (i.e. radians or degrees) rather than linear measure. See Figure 3.2.

5. The law of cosines for spherical triangles in Figure 3.2 is:

cosa = cosb cosc + sinb sinc cosA
or

cosAd = cosB cosC + sinB sin C cosa

6. The law of sines is

sin 4 sin B sinC
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3.1.3 Terrestrial latitude and longitude

“I'must be getting somewhere near the center of the Earth. . .yes. . .but then I
wonder what Latitude and Longitude I’ve got to?” (Alice had not the slightest
idea what Latitude was, nor Longitude either, but she thought they were nice
grand words to say.)

— Lewis Carroll, Alice's Adventures in Wonderland, 1897

Ancient geographers introduced the seine-like latitude—longitude system for
specifying locations on Earth well before the time Hipparchus of Rhodes
(c. 190-120 BC) wrote on geography. Figure 3.3 illustrates the basic features
of the system.

In our scheme, the first steps in setting up a coordinate system are to choose
an origin and fundamental plane. We can understand why Hipparchus, who
believed in a geocentric cosmology, would choose the center of the Earth as
the origin. Likewise, choice of the equatorial plane of the Earth as the funda-
mental plane makes a lot of practical sense. Although the location of the equator
may not be obvious to a casual observer like Alice, it is easily determined from
simple astronomical observations. Indeed, in his three-volume book on geog-
raphy, Eratosthenes of Alexandria (c. 275 —c. 194 BC) is said to have computed
the location of the equator relative to the parts of the world known to him. At the
time, there was considerable dispute as to the habitability of the (possibly too
hot) regions near the equator, but Eratosthenes clearly had little doubt about
their location.

Great circles perpendicular to the equator must pass through both poles, and
such circles are termed meridians. The place where one of these — the prime
meridian — intersects the equator could constitute a reference direction (x-axis).
Unfortunately, on Earth, there is no obvious meridian to use for this purpose.
Many choices are justifiable, and for a long time geographers simply chose a
prime meridian that passed though some locally prominent or worthy place.
Thus, the latitude of any point on Earth was unique, but its longitude was not,
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Fig. 3.3 The latitude-
longitude system. The
center of coordinates is at
C. The fundamental
direction, line CX, is
defined by the
intersection of the prime
meridian (great circle
NGX) and the equator.
Latitude, f, and
longitude, 4, for some
point, P, are measured as
shown. Latitude is
positive north of the
equator, negative south.
Astronomical longitude
for Solar System bodies
is positive in the direction
opposite the planet’s
spin. (i.e. to the west on
Earth). On Earth,
coordinates traditionally
carry no algebraic sign,
but are designated as
north or south latitude,
and west or east
longitude. The
coordinate, B, is the
geocentric latitude. The
coordinate actually used
in practical systems is the
geodetic latitude (see the
text).
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Fig. 3.4. Geocentric (f) and
geodetic (¢) latitudes. Line
PF is perpendicular to the
surface of the reference
spheroid, and
approximately in the
direction of the local
vertical (local gravitational
force).
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since it depended on which meridian one chose as prime. This was inconvenient.
Eventually, in 1884, the “international’ community (in the form of representa-
tives of 25 industrialized countries meeting in Washington, DC, at the First
International Meridian Conference) settled the zero point of longitude at the
meridian of the Royal Observatory in Greenwich, located Just outside London,
England.

You should note that the latitude coordinate, f, just discussed, is called the
geocentric latitude, to distinguish it from ¢, the geodetic latitude. Geodetic
latitude is defined in reference to an ellipsoid-of-revolution that approximates
the actual shape of the Earth. It is the angle between the equatorial plane and a
line perpendicular to the surface of the reference ellipsoid at the point in question.

Figure 3.4 shows the north pole, N, equator, E, and center, O, of the Earth.
The geocentric and geodetic latitudes of point P are f and ¢, respectively.
Geodetic latitude is easier to determine and is the one employed in specifying
positions on the Earth. The widely used technique of global positioning satel-
lites (GPS), for example, returns geodetic latitude, longitude, and height above a
reference ellipsoid. To complicate things a bit more, the most easily determined
latitude is the geographic latitude, the angle between the local vertical and the
equator. Massive objects like mountains affect the geographic but not the geo-
detic latitude and the two can differ by as much as an arc minute. Further
complications on the sub-arc-second scale arise from short- and long-term
motion of the geodetic pole itself relative to the Earth’s crust due to tides,
earthquakes, internal motions, and continental drift.

Planetary scientists establish latitude—longitude systems on other planets,
with latitude usually easily defined by the object’s rotation, while definition
of longitude depends on identifying some feature to mark a prime meridian.

Which of the two poles of a spinning object is the “north” pole? In the Solar
System, the preferred (but notuniversal!) convention is that the ecliptic —the plane
containing the Earth’s orbit — defines a fundamental plane, and a planet’s north
pole is the one that lies to the (terrestrial) north side of this plane. Longitude
should be measured as increasing in the direction opposite the spin direction.

For other objects, practices vary. One system says the north pole is deter-
mined by a right-hand rule applied to the direction of spin: wrap the fingers of
your right hand around the object’s equator so that they point in the direction of
its spin. Your thumb then points north (in this case, “north” is in the same
direction as the angular momentum vector).

3.1.4 The altitude-azimuth system

Imagine an observer, a shepherd with a well-behaved flock, say, who has some
leisure time on the job. Our shepherd is lying in an open field, contemplating the
sky. After a little consideration, our observer comes to imagine the sky as a
hemisphere — an inverted bowl whose edges rest on the horizon. Astronomical
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objects, whatever their real distances, can be seen to be stuck onto or projected
onto the inside of this hemispherical sky.

This is another situation in which the r-coordinate becomes superfluous.
The shepherd will find it difficult or impossible to determine the  coordinate
for the objects in the sky. He knows the direction of a star but not its distance
from the origin (which he will naturally take to be himself). Astronomers often
find themselves in the same situation as the shepherd. A constant theme through-
out astronomy is the problem of the third dimension, the r-coordinate: the
directions of objects are easily and accurately determined, but their distances are
not. This prompts us to use coordinate systems that ignore the r-coordinate and
only specify the two direction angles.

In Figure 3.5, we carry the shepherd’s fiction of a hemispherical sky a little
bit further, and imagine that the hemispherical bowl of the visible sky is
matched by a similar hemisphere below the horizon, so that we are able to apply
a spherical coordinate scheme like the one illustrated. Here, the origin of the
system is at O, the location of the observer. The fundamental plane is that of the
“flat” Earth (or, to be precise, a plane tangent to the tiny spherical Earth at point
0). This fundamental plane intersects the sphere of the sky at the celestial
horizon — the great circle passing through the points NES in the figure. Vertical
circles are great circles on the spherical sky that are perpendicular to the fun-
damental plane. All vertical circles pass through the overhead point, which is
called the zenith (point T in the figure), as well as the diametrically opposed
point, called the nadir. The vertical circle that runs in the north—south direction
(circle NTS in the figure) is called the observer’s meridian.

The fundamental direction in the altitude—azimuth coordinate system runs
directly north from the observer to the intersection of the meridian and the
celestial horizon (point N in the figure). In this system, a point on the sky, P,
has two coordinates:

Zenith

Meridian

Horizon

Nadir
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Fig. 3.5. The altitude-
azimuth system. The
horizon defines the
fundamental plane (gray)
and the north point on
the horizon, N, defines
the fundamental
direction. Point P has
coordinates a (azimuth),
which is measured along
the horizon circle from
north to east, and e
(altitude), measured
upwards from the
horizon. Objects with
negative altitudes are
below the horizon.
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e The altitude, or elevation, is the angular distance of P above the horizon (£LQOP ore
in the figure). Objects below the horizon have negative altitudes.

e The azimuth is the angular distance from the reference direction (the north point on
the horizon) to the intersection of the horizon and the vertical circle passing through
the object (ZNOQ or a in the figure).

Instead of the altitude, astronomers sometimes use its complement, z, the zenith

distance (L TOP in the figure).

The (a, e) coordinates of an object clearly describe where it is located in an
observer’s sky. You can readily imagine an instrument that would measure these
coordinates: a telescope or other sighting device mounted to rotate on vertical
and horizontal circles that are marked with precise graduations.

One of the most elementary astronomical observations, noticed even by the
most unobservant shepherd, is that celestial objects don’t stay in the same place
in the horizon coordinate system. Stars, planets, the Sun, and Moon all execute a
diurnal motion: they rise in the east, cross the observer’s meridian, and set in
the west. This, of course, is a reflection of the spin of our planet on its axis. The
altitude and azimuth of celestial objects will change as the Earth executes its
daily rotation. Careful measurement will show that stars (but not the Sun and
planets, which move relative to the “fixed” stars) will take about 23 hours,
56 minutes and 4.1 seconds between successive meridian crossings. This
period of time is known as one sidereal day. Very careful observations would
show that the sidereal day is actually getting longer, relative to a stable atomic
clock, by about 0.0015 second per century. The spin rate of the Earth is slowing
down.

3.1.5 The equatorial system: definition of coordinates

Because the altitude and azimuth of celestial objects change rapidly, we create
another reference system, one in which the coordinates of stars remain the same.
In this equatorial coordinate system, we carry the fiction of the spherical sky
one step further. Imagine that all celestial objects were stuck on a sphere of very
large radius, whose center is at the center of the Earth. Furthermore, imagine
that the Earth is insignificantly small compared to this celestial sphere. Now
adopt a geocentric point of view. You can account for the diurnal motion of
celestial objects by presuming that the entire celestial sphere spins east to west
on an axis coincident with the Earth’s actual spin axis. Relative to one another
objects on the sphere never change their positions (not quite true — see below).
The star patterns that make up the figures of the constellations stay put, while
terrestrials observe the entire sky — the global pattern of constellations — to spin
around its north—south axis once each sidereal day. Objects stuck on the celestial
sphere thus appear to move east to west across the terrestrial sky, traveling in
small circles centered on the nearest celestial pole.
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The fictional celestial sphere is an example of a scientific model. Although
the model is not the same as the reality, it has features that help one discuss,
predict, and understand real behavior. (You might want to think about the
meaning of the word “understand” in a situation where model and reality differ
so extensively.) The celestial-sphere model allows us to specify the positions of
the stars in a coordinate system, the equatorial system, which is independent of
time, at least on short scales. Because positions in the equatorial coordinate
system are also easy to measure from Earth, it is the system astronomers use
most widely to locate objects on the sky.

The equatorial system nominally chooses the center of the Earth as the origin
and the equatorial plane of the Earth as the fundamental plane. This aligns the
z-axis with the Earth’s spin axis, and fixes the locations of the two celestial
poles — the intersection of the z-axis and the celestial sphere. The great circle
defined by the intersection of the fundamental plane and the celestial sphere is
called the celestial equator. One can immediately measure a latitude-like coor-
dinate with respect to the celestial equator. This coordinate is called the decli-
nation (abbreviated as Dec or J), whose value is taken to be zero at the equator,
and positive in the northern celestial hemisphere; see Figure 3.6.

We choose the fundamental direction in the equatorial system by observing
the motion of the Sun relative to the background of ““fixed” stars. Because of the
Earth’s orbital motion, the Sun appears to trace out a great circle on the celestial
sphere in the course of a year. This circle is called the ecliptic (it is where
eclipses happen) and intersects the celestial equator at an angle, €, called the
obliquity of the ecliptic, equal to about 23.5 degrees. The point where the Sun
crosses the equator traveling from south to north is called the vernal equinox
and this point specifies the reference direction of the equatorial system. The
coordinate angle measured in the equatorial plane is called the right ascension
(abbreviated as RA or «). As shown in Figure 3.6, the equatorial system is right-
handed, with RA increasing from west to east.

For reasons that will be apparent shortly, RA is usually measured in hours:
minutes:seconds, rather than in degrees (24 hours of RA constitute 360 degrees
ofarc at the equator, so one hour of RA is 15 degrees of arc long at the equator).
To deal with the confusion that arises from both the units of RA and the units of
Dec having the names “minutes” and “seconds™, one can speak of “minutes (or
seconds) of time” to distinguish RA measures from the “minutes of arc” used to
measure Dec.

3.1.6 The relation between the equatorial and the
horizon systems

Figure 3.7 shows the celestial sphere with some of the features of both the
horizon and equatorial systems marked. The figure assumes an observer,
“07, located at about 60 degrees north latitude on Earth. Note the altitude of
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Fig. 3.6 The equatorial
coordinate system. In
both celestial spheres
pictured, the equator is
the great circle passing
through points V and B,
and the ecliptic is the
great circle passing
through points V and S.
The left-hand sphere
shows the locations of
the north (N) and south
(M) celestial poles, the
vernal (V) and autumnal
(A) equinoxes, the
summer (S) solstice, and
the hour circles for 0 Hr
(arc NVM) and 6 Hr (arc
NBM) of right ascension.
The right-hand sphere
shows the right
ascension (£V0Q, or %)
and declination (£QOP,
or o) of the point P.
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M

the north celestial pole (angle NOP in Figure 3.7a). You should be able to
construct a simple geometric argument to convince yourself that: the altitude
angle of the north celestial pole equals the observer’s geodetic latitude.

Observer “0O,” using the horizon system, will watch the celestial sphere turn,
and see stars move along the projected circles of constant declination. Figure 3.7a
shows the declination circle of a star that just touches the northern horizon. Stars
north of this circle never set and are termed circumpolar. Figure 3.7a also shows
the declination circle that just touches the southern horizon circle, and otherwise
lies entirely below it. Unless she changes her latitude, “O” can never see any of
the stars south of this declination circle.

Reference to Figure 3.7a also helps define a few other terms. Stars that are
neither circumpolar nor permanently below the horizon will rise in the east,
cross, or transit, the observer’s celestial meridian, and set in the west. When a
star transits the meridian it has reached its greatest altitude above the horizon,
and is said to have reached its culmination. Notice that circumpolar stars can
be observed to cross the meridian twice each sidereal day (once when they are
highest in the sky, and again when they are lowest). To avoid confusion, the
observer’s celestial meridian is divided into two pieces at the pole. The smaller
bit visible between the pole and the horizon (arc NP in the figure) is called
the lower meridian, and the remaining piece (arc PTML) is called the upper
meridian.

Figure 3.7b shows a star, S, which has crossed the upper meridian some
time ago and is moving to set in the west. A line of constant right ascension is a
great circle called an hour circle, and the hour circle for star S is shown in the
figure.

You can specify how far an object is from the meridian by giving its hour
angle. The hour circle of an object and the upper celestial meridian intersect at
the pole. The hour angle, HA, is the angle between them. Application of the law
of sines to a spherical right triangle shows that the hour angle could also be
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measured along the equator, as the arc that runs from the intersection of the
meridian and equator to the intersection of the star’s hour circle and the equator
(arc RM in Figure 3.7b). Hour angle, like right ascension, is usually measured in
time units. Recalling that RA is measured in the plane of the equator, we can
state one other definition of the hour angle:

HA of the object = RA on meridian — RA of the object

The hour angle of a star is useful because it tells how long ago (in the case
of positive HA) or how long until (negative HA) the star crossed, or will
cross, the upper meridian. The best time to observe an object is usually when
it is highest in the sky, that is, when the HA is zero and the object is at
culmination.

To compute the hour angle from the formula above, you realize that the RA
of the object is always known — you can look it up in a catalog or read it from a
star chart. How do you know the right ascension of objects on the meridian? You
read that from a sidereal clock.

A sidereal clock is based upon the apparent motions of the celestial sphere.
A clockmaker creates a clock that ticks off exactly 24 uniform “sidereal” hours
between successive upper meridian transits by the vernal equinox (a period of
about 23.93 “normal” hours, remember). If one adjusts this clock so that it reads
zero hours at precisely the moment the vernal equinox transits, then it gives the
correct sidereal time.

Sidereal day = Time between upper meridian transits
by the vernal equinox

A sidereal clock mimics the sky, where the hour circle of the vernal equinox can
represent the single hand of a 24-hour clock, and the observer’s meridian can
represent the “zero hour” mark on the clockface. There is a nice correspondence
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Fig. 3.7 The horizon and
equatorial systems. Both
spheres show the
horizon, equator and
observer’s meridian, the
north celestial pole at P,
and the zenith at T.
Sphere (a) illustrates the
diurnal paths of a
circumpolar star and of a
star that never rises.
Sphere (b) shows the
hour circle (PSR) of a star
at S, as well as its
declination, 4, its hour
angle, HA = arc RM =
/MPS, its altitude, e, and
its zenith distance, z.
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between the reading of any sidereal clock and the right ascension coordinate,
namely

sidereal time = right ascension of an object on the upper meridian

It should be clear that we can restate the definition of hour angle as:

HA of object = sidereal time now — sidereal time object culminates

If either the sidereal time or an object’s hour angle is known, one can derive the
coordinate transformations between equatorial (o, ) and the horizon (e, a)
coordinates for that object. Formulae are given in Appendix D.

3.1.7 Measuring equatorial coordinates.

Astronomers use the equatorial system because RA and Dec are easily deter-
mined with great precision from Earth-based observatories. You should have a
general idea of how this is done. Consider a specialized instrument, called a
transit telescope (or meridian circle): the transit telescope is constrained to point
only at objects on an observer’s celestial meridian — it rotates on an axis aligned
precisely east-west. The telescope is rigidly attached to a graduated circle cen-
tered on this axis. The circle lies in the plane of the meridian and rotates with the
telescope. A fixed index, established using a plumb line perhaps, always points
to the zenith. By observing where this index falls on the circle, the observer can
thus determine the altitude angle (or zenith distance) at which the telescope is
pointing. The observer is also equipped with a sidereal clock, which ticks off 24
sidereal hours between upper transits of the vernal equinox.

To use the transit telescope to determine declinations, first locate the celestial
pole. Pick out a circumpolar star. Read the graduated circle when you observe
the star cross the upper and then again when it crosses the lower meridian. The
average of the two readings gives the location of =90° declination (the north or
south celestial pole) on your circle. After this calibration you can then read the
declination of any other transiting star directly from the circle.

To find the difference in the RA of any two objects, subtract the sidereal
clock reading when you observe the first object transit from the clock reading
when you observe the second object transit. To locate the vernal equinox and the
zero point for the RA coordinate, require that the right ascension of the Sun be
zero when you observe its declination to be zero in the spring.

Astrometry is the branch of astronomy concerned with measuring the posi-
tions, and changes in position, of sources. Chapter 11 of Birney et al. (2006)
gives a more though introduction to the subject than we will do here, and Monet
(1988) gives a more advanced discussion. The Powerpoint presentation on the
Gaia website (http://www.rssd.esa.int/Gaia) gives a good introduction to astr-
ometry from space.
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Observations with a transit telescope can measure arbitrarily large angles
between sources, and the limits to the accuracy of large-angle astrometry
are different from, and usually much more severe than, the limits to small-
angle astrometry. In small-angle astrometry, one measures positions of a source
relative to a local reference frame (e.g. stars or galaxies) contained on the same
detector field. Examples of small-angle astrometry are the measurement of
the separation of double stars with a micrometer-equipped eyepiece, the meas-
urement of stellar parallax from a series of photographs, or the measurement of
the position of a minor planet in two successive digital images of the same field.

The angular size and regularity of the stellar images formed by the transit
telescope limit the precision of large-angle astrometry. The astronomer or her
computer must decide when and where the center of the image transits, a task
made difficult if the image is faint, diffuse, irregular, or changing shape on a
short time scale. In the optical or near infrared, atmospheric seeing usually
limits ground-based position measurements to an accuracy of about 0.05 arcsec,
or 50 milli-arcsec (mas).

Positional accuracy at radio wavelengths is much greater. The technique of
very long baseline interferometry (VLBI) can determine coordinates for point-
like radio sources (e.g. the centers of active galaxies) with uncertainties less
than | mas. Unfortunately, most normal stars are not sufficiently powerful radio
sources to be detected, and their positions must be determined by optical
methods.

There are other sources of error in wide-angle ground-based astrometry.
Refraction by the atmosphere (see Figure 3.8 and Appendix D) changes the
apparent positions of radio and (especially) optical sources. Variability of the
atmosphere can produce inaccuracies in the correction made for refraction.
Flexure of telescope and detector parts due to thermal expansion or variations
in gravitational loading can cause serious systematic errors. Any change, for
example, that moves the vertical index relative to the meridian circle will
introduce inconsistencies in declination measurements.

Modern procedures for measuring equatorial coordinates are much more
refined than those described at the beginning of this section, but the underlying
principles are the same. Most ground-based transit measurements are automated
with a variety of electronic image detectors and strategies for determining
transit times.

Space-based large-angle astrometry uses principles similar to the ground-
based programs. Although ground-based transit telescopes use the spinning
Earth as a platform to define both direction and time scale, any uniformly
spinning platform and any clock could be equivalently employed. The spin of
the artificial satellite HIPPARCOS, for example, allowed it to measure stellar
positions by timing transits in two optical telescopes mounted on the satellite.
Because images in space are neither blurred by atmospheric seeing or subject to
atmospheric refraction, most of the 120,000 stars in the HIPPARCOS catalog
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Fig. 3.8 Atmospheric
refraction. The observer is
on the surface at point O.
The actual path of a light
ray from object A is curved
by the atmosphere, and O
receives light from
direction A’. Likewise, the
image of object B appears
at B’ — a smaller shift in
position because both the
path length and the angle
of incidence are smaller.
Refraction thus reduces
the zenith distance of all
objects, affecting those
close to the horizon more
than those near the zenith.
The table below the figure
gives approximate shifts
in arc minutes for different
zenith distances.



72

Place, time, and motion

have positional accuracies around 0.7 mas in each coordinate. A future mission,
Gaia (the European Space Agency expects launch in 2012), will use a similar
strategy with vastly improved technology. Gaia anticipates positional accuracies
on the order of 0.007 mas (= 7 pas) for bright stars and accuracies better than 0.3
mas for close to a billion objects brighter than V' = 20.

Catalogs produced with large-angle astrometric methods like transit tele-
scope observations or the Gaia and HIPPARCOS missions are usually called
Jundamental catalogs.

It is important to realize that although the relative positions of most “fixed”
stars on the celestial sphere normally do not change appreciably on time scales
of a year or so, their equatorial coordinates do change by as much as 50 arcsec
per year due to precession and other effects. Basically, the location of the
celestial pole, equator, and equinox are always moving (see Section 3.1.8
below). This is an unfortunate inconvenience. Any measurement of RA and
Dec made with a transit circle or other instrument must allow for these changes.
What is normally done is to correct measurements to compute the coordinates
that the celestial location would have at a certain date. Currently, the celestial
equator and equinox for the year 2000 (usually written as J2000.0) are likely to
be used.

You should also realize that even the relative positions of some stars, espe-
cially nearby stars, do change very slowly due to their actual motion in space
relative to the Sun. This proper motion, although small (a large proper motion
would be a few arcsec per century), will cause a change in coordinates over
time, and an accurate specification of coordinates must give the epoch (or date)
for which they are valid. See Section 3.4.2 below.

3.1.8 Precession and nutation

Conservation of angular momentum might lead one to expect that the Earth’s
axis of rotation would maintain a fixed orientation with respect to the stars.
However, the Earth has a non-spherical mass distribution, so it does experience
gravitational torques from the Moon (primarily) and Sun. In addition to this
lunisolar effect, the other planets produce much smaller torques. As a result of
all these torques, the spin axis changes its orientation, and the celestial poles and
equator change their positions with respect to the stars. This, of course, causes
the RA and Dec of the stars to change with time.

This motion is generally separated into two components, a long-term general
trend called precession, and a short-term oscillatory motion called nutation.
Figure 3.9 illustrates precession: the north ecliptic pole remains fixed with
respect to the distant background stars, while the north celestial pole (NCP)
moves in a small circle whose center is at the ecliptic pole. The precessional
circle has a radius equal to the average obliquity (around 23 degrees), with the
NCP completing one circuit in about 26,000 years, moving at a very nearly — but
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not precisely — constant speed. The celestial equator, of course, moves along
with the pole, and the vernal equinox, which is the fundamental direction for
both the equatorial and ecliptic coordinate systems, moves westward along the
ecliptic at the rate (in the year 2000) of 5029.097 arcsec (about 1.4 degrees) per
century. Precession will in general cause both the right ascension and declina-
tion of every star to change over time, and will also cause the ecliptic longitude
(but not the ecliptic latitude) to change as well.

The most influential ancient astronomer, Hipparchus of Rhodes (recorded
observations 141—127 BCE) spectacularly combined the rich tradition of
Babylonian astronomy, which was concerned with mathematical computation
of future planetary positions from extensive historic records, and Greek astron-
omy, which focused on geometrical physical models that described celestial
phenomena. He constructed the first quantitative geocentric models for the
motion of the Sun and Moon, developed the trigonometry necessary for his
theory, injected the Babylonian sexagesimal numbering system (360° in a circle)
into western use, and compiled the first systematic star catalog. Hipparchus
discovered lunisolar precessional motion, as a steady regression of the equi-
noxes, when he compared contemporary observations with the Babylonian
records. Unfortunately, almost all his original writings are lost, and we know
his work mainly though the admiring Ptolemy, who lived three centuries later.

Since the time of Hipparchus, the vernal equinox has moved about 30° along
the ecliptic. In fact, we still refer to the vernal equinox as the “first point of
Aries,” as did Hipparchus, even though it has moved out of the constellation
Aries and through almost the entire length of the constellation Pisces since his
time. Precession also means that the star Polaris is only temporarily located near
the north celestial pole. About 4500 years ago, at about the time the Egyptians
constructed the Great Pyramid, the ““North Star’” was Thuban, the brightest star
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Fig. 3.9 Precession of the
equinoxes. The location
of the ecliptic and the
ecliptic poles is fixed on
the celestial sphere. The
celestial equator moves
so that the north celestial
pole describes a small
circle around the north
ecliptic pole of radius
equal to the mean
obliquity.
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in Draco. In 12,000 years, the star Vega will be near the pole, and Polaris will
have a declination of 43°.

Unlike lunisolar precession, planetary precession actually changes the angle
between the equator and ecliptic. The result is an oscillation in the obliquity so
that it ranges from 22° to 24°, with a period of about 41,000 years. At present,
the obliquity is decreasing from an accepted J2000 value of 23° 26’ 21.4"” ata
rate of about 47 arcsec per century.

Nutation, the short period changes in the location of the NCP, is usually
separated into two components. The first, nutation in longitude, is an oscillation
of the equinox ahead of and behind the precessional position, with an amplitude
of about 9.21 arcsec and a principal period of 18.6 years. The second, nutation in
obliquity, is a change in the value of the angle between the equator and ecliptic.
This also is a smaller oscillation, with an amplitude of about 6.86 arcsec and an
identical principal period. Both components were discovered telescopically by
James Bradley (1693—1762), the third British Astronomer Royal.

3.1.9 Barycentric coordinates

Coordinates measured with a transit telescope from the surface of the moving
Earth as described in the preceding section are in fact measured in a non-
inertial reference frame, since the spin and orbital motions of the Earth accel-
erate the telescope. These apparent equatorial coordinates exhibit variations
introduced by this non-inertial frame, and their exact values will depend on
the time of observation and the location of the telescope. Catalogs therefore
give positions in an equatorial system similar to the one defined as above, but
whose origin is at the barycenter (center of mass) of the Solar System. Bary-
centric coordinates use the mean equinox of the catalog date (a fictitious equi-
nox which moves with precessional motion, but not nutational). The barycentric
coordinates are computed from the apparent coordinates by removing several
effects. In addition to precession and nutation, we will discuss two others. The
first, due to the changing vantage point of the telescope as the Earth executes its
orbit, is called heliocentric stellar parallax. The small variation in a nearby
object’s apparent coordinates due to parallax depends on the object’s distance
and is an important quantity described in Section 3.2.2.

The second effect, caused by the finite velocity of light, is called the aberra-
tion of starlight, and produces a shift in every object’s apparent coordinates.
The magnitude of the shift depends only on the angle between the object’s
direction and the direction of the instantaneous velocity of the Earth.
Figure 3.10 shows a telescope in the barycentric coordinate system, drawn so
that the velocity of the telescope, at rest on the moving Earth, is in the +x
direction. A photon from a distant object enters the telescope at point A, travels
at the speed of light, ¢, and exits at point B. In the barycentric frame, the
photon’s path makes an angle 0 with the x-axis. However, if the photon is to
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enter and exit the moving telescope successfully, the telescope must make an
angle 0’ = 0 — A6 with the x-axis in the frame fixed on the Earth. A little
geometry shows that, if V' is the speed of the Earth,

AO = Ksin@
c

Thus aberration moves the apparent position of the source (the one measured by
a telescope on the moving Earth) towards the x-axis. The magnitude of this
effect is greatest when 0 = 90°, where it amounts to about 20.5 arcsec.

3.1.10 The ICRS

The International Astronomical Union (IAU) in 1991 recommended creation of a
special coordinate system whose origin is at the barycenter of the Solar System,
with a fundamental plane approximately coincident with the Earth’s equatorial
plane in epoch J2000.0. The x-axis of this International Celestial Reference
System (ICRS) is taken to be in the direction of the vernal equinox on that date.
However, unlike the equatorial system, or previous barycentric systems, the axes
of the ICRS are defined and fixed in space by the positions of distant galaxies, not
by the apparent motion of the Sun. Unlike Solar System objects or nearby stars,
these distant objects have undetectable angular motions relative to one another.
Their relative positions do not depend on our imperfect knowledge or observa-
tions of the Earth’s rotation, precession, and nutation. Thus, the ICRS is a very
good approximation of an inertial, non-rotating coordinate system.

In practice, radio-astronomical determinations of the equatorial coordinates of
over 200 compact extragalactic sources (mostly quasars) define this inertial
reference frame in an ongoing observing program coordinated by the Interna-
tional Earth Rotation Service in Paris. Directions of the ICRS axes are now
specified to a precision of about 0.02 mas relative to this frame. The ICRS
positions of optical sources are known primarily through HIPPARCOS and
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Fig. 3.10 The aberration
of starlight. A telescope
points towards a source.
The diagram shows the
telescope moving to the
right in the barycentric
frame. The apparent
direction of the source, 0’,
depends on the direction
and magnitude of the
telescope velocity.
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Hubble Space Telescope (HST) observations near the optical counterparts of the
defining radio sources, as well as a larger number of other radio sources. Approx-
imately 100,000 stars measured by HIPPARCOS thus have ICRS coordinates
known with uncertainties typical of that satellite’s measurements, around 1 mas.
Through the HIPPARCOS measurements, ICRS positions can be linked to the
Earth-based fundamental catalog positions like FK5 (see Chapter 4).

3.1.11 The ecliptic coordinate system

The ecliptic, the apparent path of the Sun on the celestial sphere, can also be
defined as the intersection of the Earth’s orbital plane with the celestial sphere.
The orbital angular momentum of the Earth is much greater than its spin angular
momentum, and the nature of the torques acting on each system suggests that
the orbital plane is far more likely to remain invariant in space than is the
equatorial plane. Moreover, the ecliptic plane is virtually coincident with the
plane of symmetry of the Solar System as well as lying nearly perpendicular to
the Solar System’s total angular momentum vector. As such, it is an important
reference plane for observations and dynamical studies of Solar System objects.

Astronomers define a geocentric coordinate system in which the ecliptic
is the fundamental plane and the vernal equinox is the fundamental direction.
Measure ecliptic longitude, 4, from west to east in the fundamental plane.
Measure the ecliptic latitude, f5, positive northward from the ecliptic. Since
the vernal equinox is also the fundamental direction of the equatorial system,
the north ecliptic pole is located at RA = 18 hours and Dec = 90° — ¢, where ¢
is the obliquity of the ecliptic.

The ecliptic is so nearly an invariant plane in an inertial system that, unlike
the equatorial coordinates, the ecliptic latitudes of distant stars or galaxies will
not change with time because of precession and nutation. Ecliptic longitudes on
the other hand, are tied to the location of the equinox, which is in turn defined by
the spin of the Earth, so longitudes will have a precessional change of about 50"
per year.

3.1.12 The Galactic coordinate system

Whoever turns his eye to the starry heavens on a clear night will perceive that
band of light. . . designated by the name Milky Way. .. it is seen to occupy the
direction of a great circle, and to pass in uninterrupted connection round the
whole heavens:. .. so perceptibly different from the indefiniteness of chance,
that attentive astronomers ought to have been thereby led, as a matter of course,
to seek carefully for the explanation of such a phenomenon.

— Immanuel Kant, Universal Natural History and a Theory of the Heavens, 1755

Kant’s explanation for the Milky Way envisions our own Galaxy as a flattened
system with approximately cylindrical symmetry composed of a large number of



3.2 The third dimension

stars, each similar to the Sun. Astronomers are still adding detail to Kant’s
essentially correct vision: we know the Sun is offset from the center by a large
fraction of the radius of the system, although the precise distance is uncertain by at
least 5%. We know the Milky Way, if viewed from above the plane, would show
spiral structure, but are uncertain of its precise form. Astronomers are currently
investigating extensive evidence of remarkable activity in the central regions.

It is clear that the central plane of the disk-shaped Milky Way Galaxy is
another reference plane of physical significance. Astronomers have specified a
great circle (the Galactic plane) that approximates the center-line of the Milky
Way on the celestial sphere to constitute the fundamental plane of the Galactic
coordinate system. We take the fundamental direction to be the direction of the
center of the galaxy. Galactic latitude (b or b™) is then measured positive north
(the Galactic hemisphere contains the north celestial pole) of the plane, and
Galactic longitude (/ or 1" is measured from Galactic center so as to constitute a
right-handed system.

Since neither precession nor nutation affects the Galactic latitude and longi-
tude, these coordinates would seem to constitute a superior system. However, it
is difficult to measure / and b directly, so the Galactic coordinates of any object
are in practice derived from its equatorial coordinates. The important parame-
ters are that the north Galactic pole (b = +90°) is defined to be at

o= 12:49:00,6 = +27.4° (equator and equinox of 1950)
and the Galactic center (/ = b = 0) at

a = 17:42:24,6 = — 28°55 (equator and equinox of 1950)

3.1.13 Transformation of coordinates

Transformation of coordinates involves a combination of rotations and (some-
times) translations. Note that for very precise work, (the transformation of geo-
centric to ICRS coordinates, for example) some general-relativistic modeling
may be needed.

Some of the more common transformations are addressed in the various
national almanacs, and for systems related just by rotation (equatorial and
Galactic, for example), you can work transformations out by using spherical
trigonometry (see Section 3.1.2). Some important transformations are given in
Appendix D, and calculators for most can be found on the Internet.

3.2 The third dimension

Determining the distance of almost any object in astronomy is notoriously
difficult, and uncertainties in the coordinate » are usually enormous compared
to uncertainties in direction. For example, the position of Alpha Centauri, the
nearest star after the Sun, is uncertain in the ICRS by about 0.4 mas (three parts
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Fig. 3.11 Radar ranging to
Venus. The astronomical
unit is the length of the
line ES, which scales with
EV, the Earth-to-Venus
distance.
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in 10° of a full circle), yet its distance, one of the best known, is uncertain by
about one part in 2500. A more extreme example would be one of the quasars
that define the ICRS, with a typical positional uncertainty of 0.02 mas (six parts
in 10'%). Estimates of the distances to these objects depend on our understanding
of the expansion and deceleration of the Universe, and are probably uncertain by
at least 10%. This section deals with the first two rungs in what has been called
the “cosmic distance ladder,” the sequence of methods and calibrations that
ultimately allow us to measure distances (perhaps “estimate distances™ would
be a better phrase) of the most remote objects.

3.2.1 The astronomical unit

We begin in our own Solar System. Kepler’s third law gives the scale of
planetary orbits:

a= P

where a is the average distance between the planet and the Sun measured in
astronomical units (AU, or, preferably, au) and P is the orbital period in years.
This law sets the relative sizes of planetary orbits. One au is defined to be the
mean distance between the Earth and Sun, but the length of the au in meters, and
the absolute scale of the Solar System, must be measured empirically.

Figure 3.11 illustrates one method for calibrating the au. The figure shows the
Earth and the planet Venus when they are in a position such that apparent
angular separation between Venus and the Sun, as seen from Earth, (the elon-
gation of Venus) is at a maximum. At this moment, a radio (radar) pulse is sent
from the Earth towards Venus, and a reflected pulse returns after elapsed time
At. The Earth-to-Venus distance is just

|
—cAt
26‘

Thus, from the right triangle in the figure, the length of the line ES is
one au or

Clearly, some corrections need to be made because the orbit of neither planet is
a perfect circle, but the geometry is known rather precisely. Spacecraft in orbit
around Venus and other planets (Mars, Jupiter, and Saturn) also provide the
opportunity to measure light-travel times, and similar geometric analyses yield
absolute orbit sizes. The presently accepted value for the length of the au is

lau = 1.495978 X 10"'m

with an uncertainty of 1 part in 10,
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3.2.2 Stellar parallax

Once the length of the au has been established, we can determine the distances
to nearby stars through observations of heliocentric stellar parallax. Figure
3.12 depicts the orbit of the Earth around the Sun. The plane of the orbit is
the ecliptic plane, and we set up a Sun-centered coordinate system with the
ecliptic as the fundamental plane, the z-axis pointing towards the ecliptic pole,
and the y-axis chosen so that a nearby star, S, is in the y—z plane. The distance
from the Sun to S is r. As the Earth travels in its orbit, the apparent position of
the nearby star shifts in relation to very distant objects. Compared to the back-
ground objects, the nearby star appears to move around the perimeter of the
parallactic ellipse, reflecting the Earth’s orbital motion.

Figure 3.13 shows the plane that contains the x-axis and the star. The parallax
angle, p, is half the total angular shift in the star’s position (the semi-major axis
of the parallactic ellipse in angular units). From the right triangle formed by the
Sun-—star—Earth:

tan p =

~ |8

where a is one au. Since p is in every case going to be very small, we make the
small angle approximation: for p<1:

tan p =sinp =p

So that for any right triangle where p is small:

R R~

p:

Fig. 3.12 The parallactic
ellipse. The apparent
position of the nearby
star, S, as seen from
Earth, traces out an
elliptical path on the very
distant celestial sphere as
a result of the Earth’s
orbital motion.
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In this equation, it is understood that a and r are measured in the same units (aus,
for example) and p is measured in radians. Radian measure is somewhat incon-
venient for small angles, so, noting that there are about 206265 arcsec per
radian, we can rewrite the small-angle formula as

plarcsec] = 206265 i—l [a,  in same units]

Finally, to avoid very large numbers for r, it is both convenient and traditional to
define a new unit, the parsec, with the length:

| parsec = 206265 au = 3.085678 X 10'°m = 3.261633 light years

The parsec (pc) is so named because it is the distance of an object whose
parallax is one second of arc. With the new unit, the parallax equation
becomes:

alau|

rlpe]

This equation represents a fundamental relationship between the small angle
and the sides of the astronomical triangle (any right triangle with one very short
side). For example, suppose a supergiant star is 20 pc away, and we measure its
angular diameter with the technique of speckle interferometry as 0.023 arcsec.
Then the physical diameter of of the star, which is the short side of the relevant
astronomical triangle (the quantity a in Equation (3.1)), must be 20 X 0.023 pc
arcsec = 0.46 au.

In the case of stellar parallax, the short side of the triangle is always 1 au. If
a = 1 in Equation (3.1), we have:

(3.1)

plarcsec] =

plarcsec| = (3:2)

rlpc]

In the literature, the parallax angle is often symbolized as © instead of p. Note
that the parallactic ellipse will have a semi-major axis equal to p, and a semi-
minor axis equal to p sin A, where / is the ecliptic latitude of the star. The axes of
an ellipse fit to multiple observations of the position of a nearby star will there-
fore estimate its parallax.

There are, of course, uncertainties in the measurement of small angles like
the parallax angle. Images of stars formed by Earth-based telescopes are typi-
cally blurred by the atmosphere, and are seldom smaller than a half arc second
in diameter, and are often much larger. In the early days of telescopic astronomy,
a great visual observer, James Bradley (1693—1762), like many astronomers
before him, undertook the task of measuring stellar parallax. Bradley could
measure stellar positions with a precision of about 0.5 arcsec (500 milli-
arcseconds or mas). This precision was sufficient to discover the phenomena
of nutation and aberration, but not to detect a stellar parallax (the largest
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parallax of a bright star visible at Bradley’s latitude is that of Sirius, i.e.
379 mas).

A few generations later, Friedrich Wilhelm Bessel (1784—-1846), a young
clerk in an importer’s office in Bremen, began to study navigation in order to
move ahead in the business world. Instead of mercantile success, Bessel dis-
covered his love of astronomical calculation. He revised his career plans and
secured a post as assistant to the astronomer Johann Hieronymous Schroeter,
and began an analysis of Bradley’s observations. Bessel deduced the systematic
errors in Bradley’s instruments (about 4 arcsec in declination, and 1 second of
time in RA — much worse than Bradley’s random errors), and demonstrated that
major improvements in positional accuracy should be possible. Convinced that
reducing systematic and random errors would eventually lead to a parallax
measurement, Bessel mounted a near-heroic campaign to monitor the double
star 61 Cygni along with two “background” stars. In 1838, after a 25-year
effort, he succeeded in measuring the parallax with a precission that satisfied
him. (His value for the parallax, 320 mas, is close to the modern value of
286 mas.) Bessel’s labor was typical of his ambition” and meticulous attention
to error reduction. The 61 Cygni parallax project was Herculean, and parallaxes
for any but the very nearest stars emerged only after the introduction of
photography.’

Beginning in the late 1880s, photography gradually transformed the
practice of astronomy by providing an objective record of images and by
allowing the accumulation of many photons in a long exposure. With photog-
raphy, human eyesight no longer limited human ability to detect faint objects
with a telescope. Photography vastly augmented the power of small-
angle astrometry. Astronomical photographs (negatives) were usually recorded
on emulsion-covered glass plates at the telescope, then developed in a
darkroom.

Away from the telescope, astronomers could then measure the positions of
objects on the plate, usually with a plate-measuring machine (Figure 3.14).
During the twentieth century, such machines became increasingly automated,

? Bessel pioneered mathematical analysis using the functions that now bear his name. He spent 30
years measuring the “‘Prussian degree” — the length, in meters, of a degree of arc of geodetic
latitude. This was part of an international effort to determine the shape of the Earth from
astronomical measurements. After his publication of the corrected positions of the 3222 stars
in Bradley’s catalog, Bessel went on to measure his own positions for 62,000 other stars, and
inspired his student, F.W. Argelander, to organize a project to determine the transit-circle
positions for all stars brighter than ninth magnitude in the northern hemisphere — about a third
of a million objects.

Wilhelm Struve published his measurement of the parallax of Vega immediately after Bessel’s
publication (he had actually completed his analysis before Bessel had) and Thomas Henderson

w

published the parallax of Alpha Centauri in the next year. Bessel’s measurement was the most
accurate.
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Fig. 3.14 Schematic of a
measuring engine. A
fixed microscope views
an object on a
photographic plate. The
(x, y) position of the plate
is controlled by two
precision screws, and its
value can be read from
scales on the moving
stages.

precise, and expensive. Computer-controlled measuring machines called micro-
densitometers, which record the darkness of the image at each position on a
plate, became important astronomical facilities. Direct digital recording of
images with electronic arrays, beginning in the 1970s, gradually made the
measuring machine unnecessary for many observations. Nevertheless, photog-
raphy is still employed in some vital areas of astronomy, and measuring
machines still continue to produce important data.

Conventional modern small-angle astrometry, using photographic or elec-
tronic array detectors, can measure the relative position of a nearby star with a
precision of the something like 50 mas in a single measurement. This uncertainty
can be reduced by special equipment and techniques, and by repeated measure-
ments as a star shifts around its parallactic ellipse. One’s ability to measure a
parallax depends on the presence of suitable background objects and the stability
of the observing system over several years. Uncertainty in p from conventional
ground-based small-angle astrometry can be routinely reduced to around 5 mas
with repeated measurements (50 observations of a single star are not unusual).
Even so, this means that only parallaxes larger than 50 mas will have uncertain-
ties smaller than 10%, so only those stars nearer than 1/0.05 = 20 pc can be
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considered to have distances precisely known by the ground-based parallax
method. There are approximately 1000 stars detected closer than 20 pc, a rather
small number compared to the 10" or so stars in the Milky Way. Appendix D1
lists the nearest stars, based upon the best current parallaxes.

Ground-based parallax measurements can approach 0.5 mas precision with
suitable technique and special instruments, at least for a small number of the
best-studied stars. Nevertheless, spaced-based methods have produced the
greatest volume of precision measurements. The HIPPARCOS space mission
measured the positions, parallaxes, and proper motions of 117,955 stars in the
four years between 1989 and 1993. The median precision of the parallaxes is
0.97 mas for stars brighter than = 8.0. The Hubble Space Telescope has made
a much smaller number of measurements of similar accuracy. The planned Gaia
mission anticipates precisions of 7 mas for V' = 7, 10-25 pas for V' = 15, and
around 500 pas at V' = 20. The Space Interferometry Mission (SIM lite) space-
craft, with a planned launch sometime after 2015, would use a new observing
method (a Michaelson interferometer) to achieve precisions of 4 pas for stars
brighter than V' = 15, and of 12 pas at V' = 20.

3.3 Time

Alice sighed wearily. “I think you might do something better with the time,”
she said, “than wasting it in asking riddles that have no answers.”

“If you knew Time as well as I do,” said the Hatter,”” you wouldn’t talk about
wasting IT. It’s HIM. ... I dare say you never even spoke to Time!”

“Perhaps not,” Alice cautiously replied; “but I know I have to beat time when I
learn music.”

— Lewis Carroll, Alice’s Adventures in Wonderland, 1897

Time is a physical quantity of which we have never enough, save for when we
have too much and it gets on our hands. Ambition to understand its nature has
consumed the time of many. It is unclear how much of it has thereby been
wasted in asking riddles with no answers. Perhaps time will tell.

3.3.1 Atomic time

Measuring time is a lot easier than understanding it. The way to measure time
is to “beat” it, like Alice. In grammar school, I learned to count seconds
by pronouncing syllables: “Mississippi one, Mississippi two, Mississippi
three....” A second of time is thus, roughly, the duration required to enunciate
five syllables. A similar definition, this one set by international agreement,
invokes a more objective counting operation:

1 second (Systéme International, or SI second) = the duration 0f 9,192,631,770
periods of the radiation corresponding to the transition between the two hyper-
fine levels of the ground state of the cesium-133 atom.
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A device that counts the crests of a light wave and keeps a continuous total of the
elapsed SI seconds is an atomic clock. An atomic clock located at rest on the
surface of the Earth keeps TAI or international atomic time (TAI = Temps
Atomique International). Practical atomic clocks have a precision of about 2
parts in 10"3. International atomic time is the basis for dynamical computations
involving time as a physical parameter and for recording observations made on
the surface of the Earth. Things get a little complicated if you compare an
atomic clock on the surface of the Earth with one located elsewhere (like the
barycenter of the Solar System). Relativity theory and observation show that
such clocks will not necessarily run at the same rate, but, when compared, will
differ according to their relative velocities (special relativity) and according to
their accelerations or local gravitational fields (general relativity). Precise time-
keeping accounts for relativity effects, but the starting time scale in these com-
putations is generally TAL

The astronomical day is defined as 86,400 SI seconds. There are, however,
other kinds of days.

3.3.2 Solar time

Early timekeepers found it most useful and natural to count days, months, and
years, and to subdivide these units. The day is the most obvious and practical of
these units since it correlates with the light-dark cycle on the surface of the
Earth. Much of early timekeeping was a matter of counting, grouping, and
subdividing days. Since the rotation of the Earth establishes the length of the
day, counting days is equivalent to counting rotations.

Figure 3.15 illustrates an imaginary scheme for counting and subdividing
days. The view is of the Solar System, looking down from above the Earth’s
north pole, which is point P. The plane of the page is the Earth’s equatorial
plane, and the large circle represents the equator itself. The small circle repre-
sents the position of the Sun projected onto the equatorial plane. In the figure,
we assume the Sun is motionless, and we attach hour markers just outside the
equator as if we were painting the face on an Earth-sized 24-hour clock. These
markers are motionless as well, and are labeled so that they increase counter-
clockwise, and so that the marker in the direction of the Sun is labeled 12, the
one opposite the Sun, 0. The choice of 24 hours around the circle, as well as the
subdivision into 60 minutes per hour and 60 seconds per minute, originated with |
the ancient Babylonian sexagesimal (base 60) number system. |

Point O in the figure is the location of a terrestrial observer projected onto the
equatorial plane. This observer’s meridian projects as a straight line passing
through O and P. The figure extends the proj ected meridian as an arrow, like the
hand of a clock, which will sweep around the face with the painted numbers as
the Earth rotates relative to the Sun. Since we are using the Sun as the reference
marker, this turning of the Earth is actually a combination of spin and orbital
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Solar time

on. The meridian points to the number we will call the local apparent solar
Each cycle of the meridian past the zero mark (midnight) starts a new day
1e observer. Every longitude has a different meridian and thus a different
time. The local solar time, for example, is 12 hours for an observer at point
the figure, and 6 hours for an observer at R.

little consideration of Figure 3.15b should convince you of the following
ition:

cal apparent solar time = the hour angle of the Sun as it appears on the sky
(LOPN), plus 12 hours

le observations (for example, with a sundial) will yield the local apparent
time, but this method of timekeeping has a serious deficiency. Compared
\I, local apparent solar time is non-uniform, mainly because of the Earth’s
1] motion. Because of the obliquity of the ecliptic, motion in the orbit has a
er east—west component at the solstices than at the equinoxes. In addition,
1se Earth’s orbit is elliptical, Earth’s orbital speed varies; it is greatest when
closest to the Sun (at perihelion, around January 4) and slowest when
est away (aphelion). As a result, apparent solar days throughout the year
different lengths compared to the defined astronomical day of 86,400 SI
ds.

11s non-uniformity is troublesome for precise timekeeping. To remove it,
trategy is to average out the variations by introducing the idea of the mean
a fictitious body that moves along the celestial equator at uniform angular
I, completing one circuit in one tropical year (i.e. equinox to equinox). If
define the “Sun” in Figure 3.15 as the mean Sun, we can define a more
rm time scale:

al mean solar time = the hour angle of the fictitious mean Sun, plus 12 hours

Fig. 3.15 A view of the
equatorial plane from
above the Earth’s north
pole, P. (a) The meridian
of the observer points to
the apparent solar time.
(b) The apparent solar
time, Z/OPM, equals the
hour angle of the Sun,
ZOPN, plus 12 hours.
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motion. The meridian points to the number we will call the local apparent solar
time. Each cycle of the meridian past the zero mark (midnight) starts a new day
for the observer. Every longitude has a different meridian and thus a different
solar time. The local solar time, for example, is 12 hours for an observer at point
N in the figure, and 6 hours for an observer at R.

A little consideration of Figure 3.15b should convince you of the following
definition:

local apparent solar time = the hour angle of the Sun as it appears on the sky
(£OPN), plus 12 hours

Simple observations (for example, with a sundial) will yield the local apparent
solar time, but this method of timekeeping has a serious deficiency. Compared
to TAI, local apparent solar time is non-uniform, mainly because of the Earth’s
orbital motion. Because of the obliquity of the ecliptic, motion in the orbit has a
greater east—west component at the solstices than at the equinoxes. In addition,
because Earth’s orbit is elliptical, Earth’s orbital speed varies; it is greatest when
it is closest to the Sun (at perihelion, around January 4) and slowest when
furthest away (aphelion). As a result, apparent solar days throughout the year
have different lengths compared to the defined astronomical day of 86,400 SI
seconds.

This non-uniformity is troublesome for precise timekeeping. To remove it,
one strategy is to average out the variations by introducing the idea of the mean
Sun: a fictitious body that moves along the celestial equator at uniform angular
speed, completing one circuit in one tropical year (i.e. equinox to equinox). If
we redefine the “Sun” in Figure 3.15 as the mean Sun, we can define a more
uniform time scale:

local mean solar time = the hour angle of the fictitious mean Sun, plus 12 hours

Fig. 3.15 A view of the
equatorial plane from
above the Earth’s north
pole, P. (a) The meridian
of the observer points to
the apparent solar time.
(b) The apparent solar
time, ZOPM, equals the
hour angle of the Sun,
£OPN, plus 12 hours.
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The difference between the apparent and the mean solar times is called the
equation of time:

equation of time = local apparent solar time — local mean solar time

The equation of time takes on values in the range = 15 minutes in the course
of a year. See Appendix D for more information.

To circumvent the difficulty arising from the fact that every longitude on
Earth will have a different mean solar time, one often records or predicts the
time of an event using the reading from a mean solar clock located at the zero of
longitude. This is called the universal time (UT):

Universal time (UT or UT1) = mean solar time at Greenwich

The UT clock, of course, is actually located in your laboratory — it is simply set
to agree with the mean solar time at the longitude of Greenwich. Thus, if the
Moon were to explode, everyone on Earth would agree about the UT of the
mishap, but only people at the same longitude would agree about the mean solar
time at which it occurs.

Although a big improvement on apparent solar time, the UTI is still not
completely uniform. For one thing, the precession rate (needed to compute the
mean Sun) is imperfectly known and changes over long time scales. The major
difficulty, however, is that the spin of the Earth is not quite uniform. The largest
variations are due to varying tidal effects that have monthly and half-monthly
periods, as well as seasonal (yearly) variations probably due to thermal and
meteorological effects. A smaller, random variation, with a time scale of dec-
ades, is probably due to poorly understood core—mantle interactions. Finally,
over the very long term, tidal friction causes a steady slowing of the spin of
the Earth. As result of this long-term trend, the mean solar day is getting longer
(as measured in SI seconds) at the rate of about 0.0015 seconds per century.
Thus, on the time scale of centuries, a day on the UT1 clock, (the mean solar
day) is increasing in duration compared to the constant astronomical day of
86,400 SI seconds, and is fluctuating in length by small amounts on shorter time
scales.

The International Earth Rotation Service (IERS), in Paris, has taken the
monitoring of the variations in the terrestrial spin rate as one of its missions.
In order to coordinate the Earth’s rotation with TAI, the US Naval Observatory,
working for the IERS, maintains the coordinated universal time (UTC) clock.
Coordinated universal time approximates UT1, but uses SI seconds as its basic
unit. To keep pace with UT1 to within a second, the UTC clock introduces an
integral number of “leap” seconds as needed. Because of the random compo-
nent in the acceleration of the Earth’s spin, it is not possible to know in advance
when it will be necessary to add (or remove) a leap second. A total of 22 leap
seconds were counted by TAI (but not by UTC) between 1972 and the end
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of 1998. Coordinated universal time is the basis for most legal time systems
(zone time).

Unlike UT or UTC, local solar time at least has the practical advantage of
approximate coordination with local daylight: at 12 noon on the local mean
solar clock, you can assume the Sun is near the meridian. However, every
longitude will have a different meridian and a different local solar time.
Even nearby points will use different clocks. To deal in a practical fashion
with the change in mean solar time with longitude, most legal clocks keep
zone time:

zone time = UTC + longitude correction for the zone

This strategy ensures that the legal time is the same everywhere inside the
zone. Zones are usually about 15° wide in longitude, so the longitude correction
is usually an integral number of hours. (Remember the Earth spins at a rate of
15 degrees per hour.) For example, Eastern Standard Time (longitude 75°) =
UTC — 5 hours, Pacific Standard Time (longitude 120°) = UTC — 8 hours.

Time services provide signals for setting clocks to the current UTC value. In
the USA, the National Institute of Standards and Technology broadcasts a radio
signal “(stations WWV and WWVH) at 2.5, 5, 10, 15 and 20 MHz that contain
time announcements and related information, and at 60 kHz (station WWVB)
for synchronization of clocks. Computer networks can synchronize to UTC
using standard protocols (ITS and ACTS). A convenient one-time check on
UTC is at the US Naval Observatory website (http://www.usno.navy.mil/
USNO), which is also a good source for details about various times scales
and terrestrial coordinate systems.

Sidereal time is also defined by the rotation of the Earth and its precessional
variations, and therefore does not flow uniformly, but follows the variations
manifest in UT1:

sidereal time = the hour angle of the mean vernal equinox of date

Having defined the day, astronomers find it useful to maintain a continuous
count of them:

Julian date = number of elapsed UT or UTC days since
4713 BC January 1.5 (12 hrs UT on January 1.)

It is also common to use a Julian date (JD), rather than a UT date, to specify the
date. The date of the equator and equinox in a catalog of equatorial coordinates
might be specified as

J2000.0 = “Julian epoch 2000.0” = 2000 Jan 1.5 UT = JD 2451545.0

Appendix A summarizes some other time units.
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Fig. 3.16 Displacement in
space and space velocity:
(a) illustrates the relation
between proper motion,
i, and the displacement
in a unit time; (b) shows
the two components of
the space velocity.

Place, time, and motion

(a) Initial position (b)
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3.4 Motion
3.4.1 Space motion

Consider an object that moves relative to the Sun. Figure 3.16, which is drawn
in a three-dimensional coordinate system centered at the barycenter of the Solar
System, shows the motion, that is, the displacement, of such an object over a
suitably long time. The plane of the figure contains both the origin of coordinates
and the displacement vector. Part (a) of the figure shows the actual displacement,
while part (b) shows the displacement divided by the time interval, that is, the
velocity. Both displacement and velocity vectors can be decomposed into radial
and tangential components. The total velocity, usually called the space velocity,
is the vector sum of the tangential velocity and the radial velocity:

V="v+W
5

v%+v%{

Measuring the two components requires two very different observing strategies.
Astronomers can measure radial velocity directly with a spectrograph, and can
measure tangential velocities indirectly by observing changes in position.

3.4.2 Proper motion

Suppose you have some quality observing time tonight, and you measure the
position of a certain star in ICRS coordinates. Suppose, also, that 10 years in the
future you observe the same star a second time. If this star were truly motionless
with respect to the center of the Solar System and the distant galaxies that define
the axes of the ICRS, then the coordinates you measure 10 years from now will
be the same as those you measure tonight. Remember, effects like precession
and parallax are not present in the ICRS.

On the other hand, most stars do move with respect to the ICRS axes.
Especially if the star is nearby, its coordinates may very well change after only
10 years. The rate of change in coordinates is called the proper motion of the
object. As the name suggests, proper motion reflects the “true” motion of
the star with respect to the barycenter of the Solar System, and does not include
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those coordinate changes like aberration, precession, nutation, or heliocentric
parallax that result from terrestrial motions. Proper motion, of course, is relative,
and it may not be possible (or meaningful) to decide if it is due to motion of the
barycenter or of the star.

Think about the objects that will not exhibit a proper motion over your 10-
year observing interval. Certainly, these will include very distant objects like
quasars, since they define the coordinate system. Also, any nearby star that has
no tangential velocity will have no proper motion. Finally, you will not detect a
proper motion for any object that is so far away that it does not change its
angular position by an amount detectable by your instruments, even though
its tangential velocity might be substantial.

The basic methods for measuring proper motion are fairly easy to understand.
First some terminology: in astrometry, the epoch of an observation means the
time of observation. The equatorial coordinate system used to record an obser-
vation also has a time associated with it, which is the date(s) of the equator and
equinox employed. The two dates need not be the same. Unfortunately, even
astronomers are not careful with this terminology, and will occasionally say
“epoch™ when they really mean “equator and equinox”’.

Keeping the above distinction in mind, you could determine the proper
motion of a star by comparing its positions in fundamental catalogs for two
different epochs (dates of observation), being careful to express the coordinates
using the same barycentric equator and equinox. For example, look up the
position of your star in a catalog for epoch 1934, which lists coordinates using
the 1950 equator and equinox. Then find the same star in a second catalog,
which gives its epoch 1994 position. The second catalog uses the equator and
equinox of J2000. Now you must transform the epoch 1934 coordinates so that
they are given in equator and equinox 2000 coordinates. Now that both positions
are expressed in the same coordinate system (J2000), compute the difference
between the 1994 position and the 1934 position. The difference, divided by the
time interval (60 years, in this case) is the proper motion. Proper motions
determined in this fashion are often called fundamental proper motions. The
method depends on astronomers doing the hard work of assembling at least two
fundamental catalogs.

You can also measure proper motions using small-angle astrometry. Com-
pare a photograph of a star field taken in 1994 with one taken with the same
instrument in 1934. Align the photographs so that most of the images coincide,
especially the faint background stars and galaxies. Any object that has shifted its
position with respect to these “background objects” is exhibiting relative
proper motion. The possibility that there might be some net proper motion in
the background objects limits the accuracy of this sort of measurement, as does
the likelihood of changes in the instrument over a 60-year span. Nevertheless,
relative proper motions are more easily determined than fundamental motions,
and are therefore very valuable because they are available for many more stars.
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You can, of course, use observations from different instruments (an old photo-
graph and a recent CCD frame for example) to measure relative proper motions,
but the analysis becomes a bit more complex and prone to systematic error.

Proper motion, represented by the symbol g, is usually expressed in units of
seconds of arc per year, or sometimes in seconds of arc per century. Since p is
a vector quantity, proper motion is generally tabulated as its RA and Dec
components, i, and ps.

The tangential component of the space velocity is responsible for proper
motion. For the same tangential speed, nearer objects have larger proper
motions. Refer to Figure 3.16. If an object at distance r has a tangential displace-
ment d = vyt in time ¢, then, for small g,

JlIEE aoim 12 (3.3)

The statistical implications of Equation (3.3) are so important they are expressed
in an astronomical “proverb”: swiftness means nearness. That is, given a group
of objects with some distribution of tangential velocities, the objects with the
largest values for u (swiftness) will tend, statistically, to have the smallest
values for r (nearness). Putting the quantities in Equation (3.3) in their usual
units (km s ™' for velocity, parsecs for distance, seconds of arc per year for p), it
becomes

This means, of course, that you can compute the tangential velocity if you
observe both the proper motion and the parallax (p):

= 4748
p

3.4.3 Radial velocity

On May 25, 1842, Christian Doppler (1803—1853) delivered a lecture to the
Royal Bohemian Scientific Society in Prague. Doppler considered the situation
in which an observer and a wave source are in motion relative to one another.
He made the analogy between the behavior of both water and sound waves on
the one hand, and of light waves on the other. Doppler correctly suggested that,
in all three cases, the observer would measure a frequency or wavelength
change that depended on the radial velocity of the source. The formula that
expresses his argument is exact for the case of light waves from sources with
small velocities:

= TEar (3.4)
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Here A is the wavelength observed when the source is motionless, 4 is the
wavelength observed when the source has radial velocity vg, and c is the speed
of light. In his lecture, Doppler speculated that the differing radial velocities of
stars were largely responsible for their different colors. To reach this conclu-
sion, he assumed that many stars move at a considerable fraction of the speed
of light relative to the Sun. This is wrong. But even though he was incorrect
about the colors of the stars, the Doppler effect, as expressed in Equation (3.4),
was soon verified experimentally, and is the basis for all astronomical direct
measurements of radial velocity. It is interesting to note that first Arnand
Fizeau, in Paris in 1848, and then Ernst Mach, in Vienna in 1860, each inde-
pendently worked out the theory of the Doppler effect without knowledge of
the 1842 lecture.

Fizeau and Mach made it clear to astronomers how to measure a radial
velocity. The idea is to observe a known absorption or emission /ine in the
spectrum of a moving astronomical source, and compare its wavelength with
some zero-velocity reference. The first references were simply the wavelength
scales in visual spectrographs. Angelo Secci, in Paris, and William Huggins, in
London, both attempted visual measurements for the brighter stars during the
period 1868—1876, with disappointing results. Probable errors for visual meas-
urements were on the order of 30 km s~ ', a value similar to the actual velocities
of most of the bright stars. James Keeler, at Lick Observatory in California,
eventually was able to make precision visual measurements (errors of about
2-4km s~ '), at about the same time (1888—1891) that astronomers at Potsdam
first began photographing spectra. Spectrographs (with photographic recording)
immediately proved vastly superior to spectroscopes. Observers soon began
recording comparison spectra, usually from electrically activated iron arcs or
hydrogen gas discharges, to provide a recorded wavelength scale. Figure 3.17
shows a photographic spectrum and comparison. A measuring engine (see
Figure 3.14), a microscope whose stages are moved by screws equipped with
micrometer read-outs, soon became essential for determining positions of the
lines in the source spectrum relative to the lines in the comparison. In current
practice, astronomers record spectra and comparisons digitally and compute
shifts and velocities directly from the data.

Precise radial velocities. What limits the precision of a radial velocity
measurement? We consider spectrometry in detail in Chapter 11. For now, just
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Fig. 3.17 A conventional
photographic spectrum.
A stellar spectrum, with
absorption lines, lies
between two emission-
line comparisons.
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note that, since the important measurement is the physical location of spectral
lines on the detector, an astronomer certainly would want to use a detector/
spectrometer capable of showing as much detail as possible. The resolving
power of a spectrograph is the ratio

A
S
where 6/ is wavelength resolution (i.e. two narrow spectral lines that are closer
than 84 in wavelength will appear as a single line in the spectrogram). Limits to
resolving power will be set by the design of the spectrograph, but also by the
brightness of the object being investigated, and the size and efficiency of the
telescope feeding the spectrograph. As is usual in astronomy, the most precise
measurements can be made on the brightest objects.

Early spectroscopists soon discovered other limits to precision. They found
that errors arose if a spectrograph had poor mechanical or thermal stability, or if
the path taken by light from the source was not equivalent to the path taken by
light from the comparison. New spectrograph designs improved resolving
power, efficiency, stability, and the reliability of wavelength calibration. At
the present time, random errors of less than 100 m s~ in absolute stellar radial
velocities are possible with the best optical spectrographs. At radio wavelengths,
even greater precision is routine.

Greater precision is possible in differential measurements. Here the astron-
omer is concerned only with changes in the velocity of the object, not the actual
value. Very precise optical work, for example, has been done in connection with
searches for planets orbiting solar-type stars. The presence of a planet will cause
the radial velocity of its star to vary as they both orbit the barycenter of the
system. Precisions at a number of observatories now approach 3 m s~ ! or better
for differential measurements of brighter stars.

Large redshifts. When the radial velocity of the source is a considerable
fraction of the speed of light, special relativity replaces Equation (3.4) with the
correct version:

g=8 M PR P (3.5)

where
ve 1z + 1)°—1

ﬁ_? 1z +1)> + 1

Here z is called the redshift parameter, or just the redshift. If the source moves
away from the observer, both vg and z are positive, and a spectral feature in the
visual (yellow-green) will be shifted to longer wavelengths (i.e. towards the
red). The spectrum is then said to be redshifted (even if the observed feature
were a microwave line that was shifted to longer wavelengths and thus away
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from the red). Likewise, if the source moves towards the observer, vg and z are
negative, and the spectrum is said to be blueshifted.

In an early result from the spectroscopy of non-stellar objects, Vesto Melvin
Slipher, in 1914, noticed that the vast majority of the spiral nebulae (galaxies)
had redshifted spectra. By 1931, Milton Humason and Edwin Hubble had
recorded galaxy radial velocities up to 20,000 km s~ ', and were able to dem-
onstrate that the redshift of a galaxy was directly proportional to its distance.
Most astronomers interpret Hubble’s law,

vg = Hod (3.6)
as indicating that our Universe is expanding (the distances between galaxies
are increasing). In Equation (3.6), it is customary to measure v in km s ' and
d in megaparsecs, so Hy, which is called the Hubble constant, has units of
km s~' Mpc . In these units, recent measurements of the Hubble constant fall
in the range 67—77. Actually, the redshifts are not interpreted as due to the
Doppler effect, but as the result of the expansion of space itself.

The object with the largest spectroscopic redshift (as of early 2007) is a
galaxy, IOK-1, which has z = 6.96. You can expect additional detections in this
range. Doppler’s 1842 assumption that major components of the Universe have
significant shifts in their spectra was quite correct after all.

Summary

e Coordinate systems can be characterized by a particular origin, reference plane,
reference direction, and sign convention.

e Astronomical coordinates are treated as coordinates on the surface of a sphere.
The laws of spherical trigonometry apply. Concepts:
great circle law of cosines law of sines

e The geocentric terrestrial latitude and longitude system uses the equatorial plane
and prime meridian as references. Concepts:
geocentric latitude geodetic latitude geographic latitude
Greenwich polar motion

e The altitude—azimuth system has its origin at the observer and uses the horizontal
plane and geographic north as references. Concepts:

vertical circle zenith nadir
zenith distance meridian diurnal motion
sidereal day

e The equatorial system of right ascension and declination locates objects on the
celestial sphere. The Earth’s equatorial plane and the vernal equinox are the refer-
ences. This system rotates with respect to the altitude—azimuth system. Concepts:

(continued)
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Summary (cont.)

celestial pole ecliptic obliquity

altitude of pole= upper meridian circumpolar star
observer’s latitude sidereal time hour circle

transit

hour angle

e Astrometry establishes the positions of celestial objects. Positions are best
transformed into the International Celestial Reference Frame (ICRS) which is
independent of motions of the Earth. Concepts:

transit telescope meridian circle VLBI

HIPPARCOS Hipparchus atmospheric refraction
Jfundamental catalog Gaia epoch

precession nutation apparent coordinates
aberration of starlight ecliptic coordinates J2000

Galactic coordinates

e Heliocentric stellar parallax is an effect that permits measurement of distances to
nearby stars. Concepts:
astronomical unit (au) astronomical triangle
parallax angle parsec (pc)

alau]

[pc]

plarcsec] =

o

e Physicists define time in terms of the behavior of light, but practical time measure-
ments have been historically tied to the rotation of the Earth. Concepts:

atomic clock local apparent solar time
TAI second local mean solar time
universal time coordinated universal time
zone time Julian date

e The tangential component of an object’s velocity in the ICRS system gives rise to
a change in angular position whose rate of change is called the proper motion.

plarcsec yr!]

vr[kms™'] = 4.74
plarcsec]

e The radial component of an object’s velocity can be measured by a shift in its
spectrum due to the Doppler effect. Similar shifts are caused by the expansion of
the universe. Concepts:
redshift parameter: z = AL/L ~ v /c
spectroscopic resolving power (R) relativistic Doppler effect
Hubble’s law: Vp: = H{)d




Exercises

Exercises

Each problem that I solved became a rule which served afterwards to solve other

problems.
— Rene Descartes, Discours de la Méthode . . ., 1637

. Two objects differ in RA by an amount Az, and have declinations ¢; and J,. Show
that their angular separation, 0, is given by

cos ) = sind; sind, + cosd; cos o, cos A

. Which city is closer to New York (74° W, 41° N): Los Angeles (118° W, 34° N) or
Mexico City (99° W, 19° N)? By how much? (The radius of the Earth is 6300 km).
. A. Kustner conducted one of the first systematic radial velocity studies. In 1905, he
found that the velocity of stars in the ecliptic plane varied with an amplitude of
29.617 = .057 km s~ in the course of a sidereal year. Assume that the Earth’s orbit
is circular and use this information to derive the length (and uncertainty) of the au in
kilometers.

. Position angles are measured from north through east on the sky. For example, the
figure at right shows a double star system in which component B is located in
position angle 0 with respect to component A. The two have an angular separation
of r seconds of arc. If component A has equatorial coordinates («, ¢), and B has
coordinates (« + Aa, 6 + Ad), derive expressions for Ax and Ad.

. The field of view of the Vassar 32-inch CCD camera is a square 1000 seconds of arc
on each side. Fill in the width of the field in the RA coordinate (i.e. in H:M:S units)
when the telescope is pointed at declinations listed in the table:

Declination (degrees) Width of field (minutes:seconds of RA)

0 1:06.7
20
40
60
70
80
85

. The winter solstice (December 22) is the date of the longest night of the year in the
northern hemisphere. However, the date of the earliest sunset in the northern hemi-
sphere occurs much earlier in the month (at about 16:35 zone time on December 8 for
longitude 0 degrees and latitude 40 degrees N). Examine the curve for the equation
of time and suggest why this might be the case. Explain how this observation would
depend upon one’s exact longitude within a time zone.

. On the date of the winter solstice, what are the approximate local sidereal times and
local apparent solar times at sunset? (Assume 40° N latitude and use a celestial sphere.)

E <€
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8.

10.

11.

12:

A certain supernova remnant in our galaxy is an expanding spherical shell of glow-
ing gas. The angular diameter of the remnant, as seen from Earth, is 22.0 arcsec. The
parallax of the remnant is known to be 4.17 mas from space telescope measurements.
Compute its distance in parsecs and radius in astronomical units.

An astronomer obtains a spectrum of the central part of the above remnant, which
shows emission lines. Close examination of the line due to hydrogen near wave-
length 656 nm reveals that it is actually double. The components, presumably from
the front and back of the shell, are separated by 0.160 nanometers. (a) With what
velocity is the nebula expanding? (b) Assuming this has remained constant, estimate
the age of the remnant. (c) The astronomer compares images of the remnant taken 60
years apart, and finds that the nebula has grown in diameter from 18.4 to 22.0 arcsec.
Use this data to make a new computation for the distance of the remnant independent
of the parallax.

In 1840, the estimated value of the au, 1.535 X 10® km, was based upon Encke’s 1824
analysis of the observations of the transits of Venus in 1761 and 1769. Encke’s result
should have been accorded a relative uncertainty of around 5%. If Bessel’s (1838)
parallax for 61 Cygni was 0.32 £ 0.04 arcsec, compute the distance and the total
relative uncertainty in the distance to this star, in kilometers, from the data available in
1840. If the presently accepted value for the parallax is 287.1 * 0.5 mas, compute the
modern estimate of the distance, again in kilometers, and its uncertainty.

The angular diameter of the Sun is 32 arc minutes when it is at the zenith. Using
the table below (you will need to interpolate), plot a curve showing the
apparent shape of the Sun as it sets. You should plot the ellipticity of the apparent
solar disk as a function of the elevation angle of the lower limb, for elevations
between 0 and 10 degrees. (If @ and b are the semi-major and semi-minor axes of
an ellipse, its ellipticity, &, is (a — b)/a. The ellipticity varies between 0 and 1.) Is your
result consistent with your visual impression of the setting Sun?

Apparentzenith 75 80 83 85 86 87 88 89 89.5 90
distance
(degrees)

Atmospheric 215 320 445 590 700 860 1103 1480 1760 2123
refraction
(arcsec)

The Foggy Bottom Observatory has discovered an unusual object near the ecliptic,
an object some students suggest is a very nearby sub-luminous star, and others
think is a trans-Neptunian asteroid. The object was near opposition on the date of
discovery.

Below are sketches of four CCD images of this object, taken 0, 3, 9 and 12 months
after discovery. Sketches are oriented so that ecliptic longitude is in the horizontal
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14.

Exercises

direction. The small squares in the grid surrounding each frame measure 250 mas X
250 mas. Note that the alignment of the grid and stars varies from frame to frame.
(a) Why is there no frame 6 months after discovery?
(b) Compute the proper motion, parallax, and distance to this object.
(c) Is it a star or an asteroid? Explain your reasoning.
(d) Compute its tangential velocity.

Current telescopes can detect stellar objects with apparent magnitudes as faint as
V = 24 with good precision. What is the greatest distance that a supernova of
magnitude —20 can be detected? Compute the expected redshift parameter of such
an object.

The distances (there are actually several definitions of “distance” in an expanding
universe) corresponding to redshift parameters larger than 1 actually depend on
several cosmological parameters, not the simple relations in Equations (3.5) and
(3.6). For example, the time light has taken to travel from the galaxy 10K-1
z = 6.96) to us, using current values of these parameters, is about 12.88 Gyr.
Compare this with the light travel time computed naively from Equations (3.5)
and (3.6).
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