
Python CCD Processing Handbook by Andrew Bradshaw, 6/4/12

This series of instructions is meant to give you an introduction into image processing and plotting in 

python. It does not contain final science-grade analysis, but is rather a demonstration of possible 
methods.

All analysis should be possible within the Enthought python distribution, which is available for 
academics here: http://download.enthought.com/epd_7.2/

Image Reduction
Given that we have a series of images, flats, biases, and darks, we would like to perform image 
arithmetic on them to get the optimum image out. Say our list of files is

bias-1.FIT bias-4.FIT dark-2.FIT dark-5.FIT flat-v-3.FIT m13-v-60s-1.FIT
bias-2.FIT bias-5.FIT dark-3.FIT flat-v-1.FIT flat-v-4.FIT m13-v-60s-2.FIT

bias-3.FIT dark-1.FIT dark-4.FIT flat-v-2.FIT flat-v-5.FIT m13-v-60s-3.FIT

Now we would like to first of all make a master flat, a master bias, and a master dark. This is 
necessary in order to reduce the effect of cosmic rays. To do this in python, execute the code:

import pyfits
darks = array([pyfits.getdata("dark-%d.fit" % n) for n in range(1,6)])

print shape(darks)
(5, 1024, 1024)

dark = median(darks,axis=0)
print shape(dark)

(1024, 1024)
imshow(dark,cmap=cm.gray)

Where the last command is just to see what the 

final image looks like. If it doesn't display much, 
try using imshow(log(dark),cmap=cm.gray) in 

order to stretch the brightness levels. The 
master flat is shown to the right; notice that the 

detector is defintely not flat!

Do a similar median combine of the flats and 
biases. And load in all of the science frames but 

do not take the median. Now we are ready to 
perform the image arithmetic operation:

in python this looks like:

http://download.enthought.com/epd_7.2/


final = ((science-dark)/(flat-bias))*mean(flat-bias)
shape(final)

(3, 1024, 1024)

Where the final image should be an array of 
however many science frames you had. Also 

note that the denominator (flat-bias) should 
be normalized, so that your pixel values stay 

high. 

Once you have the final array of corrected 
images, you can then median combine the 

final images into one image, which is shown 
on the right.

Image analysis
Now that we have cleaned up our images a 

bit, we can do some image analysis! Say we 
want to find all of the stars in our image. 

There are lots of ways to do this, inside of 
python and out. A kinda good way to find centroids in python is simply using scipy's center of mass 

function.

The method is this: first tag all of the pixels which are larger than the threshold, defined here to be 

the mean of the image plus 2 standard deviations. This will create a map of pixels which satisfy the 
threshold, which we hold in the variable array called labels (the number of stars is held in "num"). 

Then perform the center of mass calculation on each of these pixel chunks:

import scipy.ndimage as snd

threshold = img.mean() + 2*img.std()
labels, num = snd.label(img > threshold, np.ones((3,3)))

centers = snd.center_of_mass(img, labels, range(1,num+1))

The center of mass function has now found the centers of some stars, but the centers is in a clunky 
list format. Just extract the x and y values using the command:

x = array(centers)[:,0]
y = array(centers)[:,1]

The (potential) star center (x, y) values are plotted below.



Now we have some numbers we can play with! How about making a histogram of the distance from 
the center?

r = sqrt((x-512)**2+(y-512)**2)
hist(r, bins=50)

Or how about the distribution of the flux values at the centers of each star? Use the x and y values of 

the centers of stars to subscript the image, and hold each flux measurement in an array called 
values. Note that we had to convert the X and Y centers to integers in order to be able to subscript 

our image array with them, and that we take the logarithm of the pixel value to give a rough 
magnitude of the stars (the zero-point offset is unknown without calibration).

xint = x.astype(int)
yint = y.astype(int)

values = img[xint,yint]
hist(log(values),bins=50)

There are lots of other things we could do here, now that our data is digitized and cleaned. What 

other operations could you do with the data now?

Another filter, and color data!
Let's load in another set of color images, and play with those too. Read in the flats for the B data, and 

the B data itself, then perform the image arithmetic that we did above. The bias and dark frames are 
filter-independent, but the flat image is not, because the filter throughput is factored into each pixel's 

sensitivity. So perform the reduction on B as we did in V:

bflats = array([pyfits.getdata("flat-b-%d.FIT" % n) for n in range (1,6)])

b = array([pyfits.getdata("m13-b-60s-%d.FIT" % n) for n in range (1,4)])
finalb = (b-dark)/(bflat-bias)*mean(bflat-bias)

Assuming the B and V images are perfectly aligned (a poor assumption), we can now look at how the 

center values of the stars are distributed in B and V at the same time! This is very useful, because 



we can plot the star brightness as a function of the ratio of the brightness in B and V, which is a 
proxy for temperature (called color). This is shown below.

imgv = img        # our final v image
imgb = median(finalb,axis=0)     # the median of our reduced B images

bflux = imgb[xint,yint]
vflux = imgv[xint,yint]

plot(log(bflux)-log(vflux),log(bflux),'ro')
axis([-2.5,0,-1.0,-5]) #flip the axis

Image alignment
We previously assumed that the images in B and V 
are aligned with one another, but this is probably 

not the case. In fact, each exposure is probably 
offset from one another! We can see this easily by 

looking at the distribution of our star center values 
in B and V, which is shown on the right. We must 

correct for this offset.

threshold = imgb.mean() + 3*imgb.std()

labels,num = snd.label(imgb > threshold, np.ones((3,3)))
centers = snd.center_of_mass(imgb, labels, range(1,num+1)) 

# the same "star center-finding" process from above
xb=array(centers)[:,0]

yb=array(centers)[:,1]
plot(xb,yb,'go')

plot(x,y,'bo') #b for blue, g for green

To correct for the offset, use scipy to interpolate the 

image and then shift. This is done with the following 
commands:

from scipy.ndimage import interpolation 

newb = interpolation.shift(bimg,[.6, -.7])

pyfits.writeto('out.fits',newb,hdr)

Where in the last line we have saved the new offset image as 'out.fits' so that we can use it later for 

analysis. The 'hdr' is the header from the old fits file, which can be obtained by entering 



"foo,hdr=pyfits.getdata('old_b_image.fits',header=True)". The offset-corrected star center is shown 
as a red point in the image to the right (more corrections would be necessary).

Note that the new offset fits image will have some edge effects, which may need to be thrown out or 
ignored in the analysis.

PSF Fitting
Say we want to better understand what the Point Spread Function (PSF) looks like across our image. 

First we want to select some representative stars in our image, so open the .fits file in DS9. Create a 
small region around some stars which are bright (but unsaturated) and which don't have any friends 

nearby. Save the regions to a file (making sure to save it in X Y format) and then open it in python. 
My filename is ds9.reg, so I open it like:

import numpy

regions = numpy.loadtxt("ds9.reg")

xc,yc = regions[:,0],regions[:,1]

Let us illustrate the PSF fitting process using just one of the centers, say, the first one in the list. We 
will be fitting a Gaussian to only a line plot, also just for illustrative purposes. With your data you 

perhaps would want to fit more than one star, and in two dimensions, and maybe not even a 
Gaussian! But this is the gist of it:

import scipy.optimize

y = vimg[xc[0],yc[0]-10:yc[0]+10] # take star values in a 1 by 20 pixel strip

x = linspace(0,len(y)-1,len(y)) # make an array of x values, same length as y

Now define an "anonymous function" in python (called a lambda form, or lambda), which will take in 
a set of parameters and output the function operated upon those parameters. Here we define a 

Gaussian as our fitting function. We also define a lambda that is the fitted function minus the data; 
this function is what we will be minimizing using scipy.

fitfunc = lambda p, x: p[0]*scipy.exp(-(x-p[1])**2/(2.0*p[2]**2))

errfunc = lambda p, x, y: fitfunc(p,x)-y

parameters,foo = scipy.optimize.leastsq(errfunc,(2000,10,3),args=(x,y)) 

# foo is a throwaway variable

The last line is the fitting part, it is minimizing our 

error function using least squares by taking in three 
arguments: 1) the function to be minimized, 2) our 

initial guess for the parameters (amplitude, mean, 
and std dev), and 3) the x and y values of our data. 

The plot of our fit and the data (with error bars) is 
included here, and the plotting code is below:



clf()

xlabel('X')

ylabel('Pixel value above background')

plot(x,fitfunc(parameters,x))

errorbar(x,y,yerr=sqrt(y),fmt='ro')

Aperture Photometry and Calibration
Finally, it is necessary to get a magnitude for the stars in our field. To do this properly see the details 
starting on page 310 in Chromey. Here we will demonstrate the method in python using various 

apertures on a galaxy. The method can certainly be improved upon, but that is left to the student.

First we need to choose some apertures to measure the image flux. We can do this in DS9; first open 

the image and then go to the Region menu, and then under the Shape sub-menu click on "Annulus". 
Now clicking anywhere in the image will plop down an annulus whose size can be adjusted. Place 

several annuli with different inner and outer radii, centered on the galaxy, as shown in the image on 
the right. Once you have all of the regions you want, Save the regions to a file, this time using the 

"pros" format (which can be easily read into python).

Read these parameters into python using numpy, selecting only the 3rd-6th columns which represent 

the x/y center and inner/outer radii.

import numpy

import pyfits

ann=numpy.loadtxt('annulus.reg',usecols=(2,3,4,5))

xc=ann[0,0]

yc=ann[0,1]

inner=ann[:,2] #copy out the radius columns to their own arrays

outer=ann[:,3]

img=pyfits.getdata('M51 V Combined Average.FIT')

Now that we know where to look, we want to grab all of the pixels in the image which are within each 
annulus. One way to do this is with a 'for loop', which will run through all pixels (i,j). Then add a 

condition which checks whether the pixel (i,j) is in each of the annuli, and if so, then add its flux and 
increment the counter for that annulus. In python this looks like:

npix = numpy.zeros(len(ann))

pix = numpy.zeros(len(ann))

for i in range(img.shape[0]):

for j in range(img.shape[1]):

r = numpy.sqrt((i-xc)**2+(j-yc)**2)

for k in range(len(ann)):

if inner[k]<r<outer[k]:

pix[k]+=img[i,j]

npix[k]+=1



Where we have created an array of zeros to be filled in with aperture data using numpy.zeros. The for 
statement can be entered into the command line by just hitting enter after typing "for i in 

range(blah):"; the colon at the end makes python return a new line but not evaluate it, allowing you 
to enter further commands.

This process results in two filled-in arrays of the flux within the annulus and the number of pixels 
within each annulus. We can divide the first by the second to calculate the average pixel value inside 

each annulus! We can also plot this, which is shown below:

In [91]: pix,npix,pix/npix

Out[91]:

(array([ 3523697., 12751457., 17776646., 7576695., 35294274.]),

array([ 1972., 7328., 10484., 4324., 21400.]),

array([ 1786.86460446, 1740.10057314, 1695.59767264, 1752.24213691, 

1649.26514019]))

import matplotlib.pyplot as plt

plt.plot(inner,pix/npix,'ro'), plt.xlabel('Inner radius (pix)'), 

plt.ylabel('Average pixel value')

plt.show()

Now you can imagine using this method to measure a star's flux: choose an aperture to sum up all of 
the star's flux, and then also choose a sky annulus sufficiently far away from the center. For galaxies, 

you can (and should) do this for more than 5 aperture sizes to become more precise, and of course 
subtract the background using a method of your choice.



Making a Color Composite
If you have several bands of images, you can pretty easily make a color composite. Just match up the 
filters (e.g. I, V, B) with the typical R-G-B colors and then make plot them using the imshow 

command. In python you can do this easily using an extra piece of code called img_scale.py which 
someone has kindly written for us (available here: http://andrewnomy.com/pub/img_scale.py). So first 

import all of the necessary functions and also your images: 

import pyfits, img_scale, numpy, pylab

i=pyfits.getdata('r-image.fits')    # and also for a 'green' and 'blue' image

Then you need to define how to scale the images, so choose a maximum and minimum value (which 

I do by using the mean and std. deviations), and use the image scaling code to do an arcsin stretch:

imin,imax=i.mean()+.75*i.std(),i.mean()+5*i.std() # also do for G and B

img=numpy.zeros((1024,1024,3))

img[:,:,0]=img_scale.asinh(i,scale_min=imin,scale_max=imax)

img[:,:,1]=img_scale.asinh(v,scale_min=vmin,scale_max=vmax)

img[:,:,2]=img_scale.asinh(b,scale_min=bmin,scale_max=bmax)

And then plot the result! An example of a color 
composite done this was is shown on the right (of 

M51, the 'Whirlpool Galaxy').

pylab.clf()

pylab.imshow(img)

pylab.show()

http://andrewnomy.com/pub/img_scale.py
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