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where oy is the average distance that any single electron moves. Therefore,
e o4
oy = — N—R.
2 Y P (3.17)

Now N is the total number of conduction electrons in the resistor times
the number of walks in time fg, so
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where 7 is the number density of conduction electrons and 7 is the time
between collisions of a single electron. The fluctuation in the motion of a
single electron is

of = (d*) = (v¥1?) = ()72,

and this is what we connect to temperature by (E) = %m(vf) = %kT.
where m is the mass of an electron and we note that motion is Honly
in one dimension. The factor k is Boltzmann’s constant which defines
the fundamental relationship between temperature and internal energy.

Therefore
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We note that (see Eq. (2.14))
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where p is the resistivity.?
Finally, put this all into Eq. (3.17) to get
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. SThe definition of 7 used here differs from that used in Section 2.2 by a factor of 2. That
is because we are dealing with a single electron.
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It is customary, however, to express the noise using the equivalent
pbandwidth Av = 1/2¢. Therefore, we have

(V2) = 4kT RAv. (3.19)

In order to measure the voltage V, we will need to amplify or at least
process the signal in some way. Let g(v) be the gain of this processing
circuit at frequency v. Then the output voltage fluctuation d(V?) integrated
over some small frequency range dv is given by

d(V?) = 4kT Rg*(v) dv.

Measurements are made by integrating the signal over a relatively large
bandwidth Av. This bandwidth is typically determined by the gain function
g(v), which is large only over some finite frequency range. We therefore
obtain the expression

(V2 = 4kT RG*Av, (3.20)

where G and Av are constants defined by

Gzszf ¢*(v)dv. (3.21)
0

3.6.2. Measurements

We will measure the Johnson noise in a series of resistors, and use the result
to determine a value for Boltzmann’s constant k.

The setup is shown schematically in Fig. 3.22. The voltage across the
resistor R is immediately processed by an “amplifier,” which essentially
multiplies this voltage by a function g(v). The output of the amplifier is
measured using a digital oscilloscope. You will use the oscilloscope to
measure (V2), given by Eq. (3.20). By changing the value of R (simply by
changing resistors), you measure (V2) as a function of R, and the result
should be a straight line. The slope of the line is just 4kT G*Av, so once
you have calibrated the gain function of the amplifier, you can get k. (You
can assume the resistor is at room temperature.)
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FIGURE 3.22 Schematic for measuring Johnson noise.

Let’s look a little more carefully at the properties of the amplifier. We
will be working in the several tens of kilohertz range, so to estimate the
gain we need, take a bandwidth Av = 10 kHz. The digital oscilloscope
cannot make measurements much smaller than around 0.5 mV, so Eq. (3.20)
implies that the nominal gain G must be on the order of 1200 or more to
measure the noise in a 1-k2 resistor. The amplifier also needs to have
low noise and good stability itself, if we are going to use it on such a small
signal. A high-gain opamp with negative feedback (see Section 3.5) sounds
like the right solution.

The bandwidth of the amplifier also needs to be considered. In fact,
if we are going to do the job right, we want to make sure that all the
bandwidth limitations are given by the amplifier, and not by the oscil-
loscope, for example. That way, we can measure the function g(v) of
the amplifier stage only. The oscilloscope bandwidth will depend on the
timebase used, that is, the time over which the output voltage is aver-
aged and digitized. As long as the oscilloscope’s bandwidth is greater
than the amplifier’s, you will be OK. You ensure this by putting a
bandwidth filter on the output of the amplifier. In the beginning, you
will use a commercial bandwidth filter with adjustable lower and upper
limits.

The first “amplifier” you will use, therefore, is shown in Fig. 3.23.
For now the bandwidth filter is just a box with an input and output, and
with knobs you can turn. The gain-producing part of the amplifier, on the
other hand, is essentially a cut-and-dry application of opamps and negative
feedback. In fact, as shown in Fig. 3.23, two such negative feedback loops
are cascaded to get the appropriate gain and input characteristics. The first
loop uses a HA5170 opamp and a low gain, while the second stage is higher
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FIGURE 3.23 Amplifier stage for measurement of Johnson noise.
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FIGURE 3.24 Pinout diagram for the opamp chips used in this experiment. We are not
using the “Bal” connections. The notation “NC” means “no connection.”

gain and uses a HA5147.° Good starting values to use are R} = 10£2,
R, = 1002, and R3 = 2.2kQ. This gives the first stage a gain of 11 and
the second stage a gain of 221 times the bandwidth function imposed by
the opamps and the bandwidth filter.

All of these components, including your input resistor R (but not the
commercial bandwidth filter), are mounted on a breadboard so you can
change things easily. The pinout diagram for the HA5170 and HA5147 is
shown in Fig. 3.24. The opamps are powered by +12-V levels applied in
parallel with 0.1-wF capacitors to ground, to filter off noise in the power
supply. Connections to the breadboard are made using wires soldered to
BNC connectors.

OThe credit for figuring out the right opamps and amplifier circuit in general goes to Jeff
Fedison, RPI Class of ’94. More details on this circuit design are available.
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Set up the circuit shown in Fig. 3.23. Check things carefully, especially if
you are not used to working with breadboards. In particular, make sure the
12-V DC levels are connected properly, before you turn the power supply
on. The output from the breadboard gets connected to the bandwidth filter,
and the output of the bandwidth filter goes into the oscilloscope. The lower
and upper limits of the bandwidth filter are not crucial, but 5 and 20 kHz
are a reasonable place to start.

First you need to measure the gain of the amplifier/bandwidth filter as a
function of frequency. All you really need to do is put a sine wave input to
the circuit and measure the output on an oscilloscope. The output should
look the same as the input (i.e., a sine wave of the same frequency v), but
the amplitude should be bigger. The ratio of the output to input amplitudes
is just the gain g(v). There is a problem, though. You have built an amplifier
of very large gain, around 2.4 x 103, and the output amplitude must be less
than a few volts so the opamps do not saturate. That means that the input
must be less than a couple of millivolts. That is barely enough to see on
an oscilloscope, assuming your waveform generator can make a good sine
wave with such a small amplitude.

You get around this problem by using the schematic shown in Fig. 3.25.
The waveform generator output passes through a voltage divider, cutting
the amplitude down by a known factor. This divided voltage is used as
input to the amplifier. It is a good idea to measure the resistor values
Rypig and Rgmay using an ohmmeter, rather than to trust the color code
(which can be off by up to 10%). Pick resistors that give you a divider ratio
somewhere between 10 and 100. It is also a good idea to see the output of
the waveform generator and look at it on the oscilloscope along with the
amplifier/bandwidth filter output.

Waveform
generator
Rbig
L
Rsmat Amplifier Digital
oscilloscope
—

FIGURE 3.25 Calibration scheme for the noise amplifier.
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FIGURE 3.26 Sample of data used to determine g(v) for the amplifier followed by the

commercial bandwidth filter. The simple negative feedback formula gives a gain of 2431,
and the bandwidth filter is set for v 9 = 5 kHz and vy = 20 kHz.

Make your measurements of g(v) by varying the frequency of the wave-
form generator, and recording the output amplitude. Of course, you must
also record the input (i.e., generator) amplitude, but if you check it every
time you change v, you can be sure it does not change during your measure-
ment. Measure over a range of frequencies that allows you to clearly see
the cutoffs from the bandwidth filter, including the shape as g approaches
zero. Also make sure you confirm that the gain is relatively flat in between
the limits. An example is shown in Fig. 3.26. The setup used Ry = 10£2,
Ry = 1009, and Rz = 2.2k, so the total gain should be 2431, and
with bandwidth filter limits at 5 and 20 kHz. The main features seem to
be correct, although the filter has apparently decreased the maximum gain
a bit.

Now take measurements of the actual Johnson noise as a function of R.
Remove the waveform generator and voltage divider inputs, and put the
resistor you want to measure across the input to the amplifier. Set the time
per division on the oscilloscope so that its bandwidth limit is much larger
than the upper frequency you used on the bandwidth filter. For example,
if there are 10,000 points (i.e., samples) per trace and you set the scope to
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FIGURE 3.27 Oscilloscope traces of the output of the bandwidth filter, and for 100 traces
averaged together by the oscilloscope. Note the difference in the vertical scales.

0.2 ms/div, then the time per sample is 0.2 s since there are ten divisions.
The bandwidth is the reciprocal of twice this time or 2.5 MHz. If the filter
cuts off at 20 kHz, then this would be fine.

Use resistors with R near zero (10 €2) and up to R & 10kS2. The oscil-
loscope trace will look like an oscillatory signal, but that is because you
are (likely) using tight bandwidth limits. What would the trace look like if
the lower limit was only slightly smaller than the upper limit?

Figure 3.27 shows a single sweep trace on the scope directly from the
output of the bandwidth filter, and the average (as done by the scope itself )
of 100 traces. The average looks the “same” as the single sweep, but it
is 10 times smaller. (Note the difference in the vertical scales.) It is clear,
therefore, that the oscillations in the input signal are random in phase, even
though they are confined within the limits of the bandwidth filter. Most
digital oscilloscopes have the ability to calculate and display for you the
mean and variance of the trace. This will be useful for your analysis.

You need to determine the value of GZAv = fooo g>(v)dv. Make a
plot of gz(v) as a function of v and estimate the integral under the curve.
You can try to estimate this graphically, but you can easily get an accurate
answer using the MATLAB function trapz, which performs a trapezoidal
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FIGURE3.28 Datataken by measuring the standard deviation of the output voltage signal,
as a function of the input resistor value. The slope gives k, while the intercept gives the
equivalent input noise voltage, after correcting for the amplifier gain x bandwidth.

integration given a list of (x, y) values. For the data of Fig. 3.26 one finds
that

G*Av = (7.9 4+ 0.5) x 10’ kHz.

Next we make a plot of ((V — (V))?) as a function of R. Note that
since (V) = 0, the above expression reduces to (V?2). The plot is shown in
Fig. 3.28 and a linear fit gives

(V2)/R = (1.33 £ 0.08) mV2/k

and an intercept at 4 mV?.

We can now calculate Boltzmann’s constant k from the above data using
Eq. (3.20) and setting T = 298 K (room temperature). Using units of hertz,
volts, and ohms, we write

_(VAH/R _ (1.33+£0.08) x 10~
4T G2Av 4x298 % (7.940.5) x 1010

This result is in excellent agreement with the accepted value k = 1.38 x
19723 J /K.

—(1.42+0.13) x 1073 J /K.
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The intercept of the line in Fig. 3.28 is the noise at R = 0. You would
expect this to be zero if Johnson noise in your input resistor were the only
thing going on. The input opamp, however, has some noise of its own, due
to internal Johnson noise, shot noise, and so on. The specification sheet for
the HAS5170 gives an equivalent input noise of around 10 nV/v/Hz. How
does this compare to your measurement?

There are a number of variations and extensions to this experiment. For
example, instead of simply using the oscilloscope to determine the standard
deviation, use MATLAB and the trace data (as in Fig. 3.27) to get the values
and examine their distribution. You can get the data into an array trace,
and you can use mean(trace) and std(trace) to get the mean and standard
deviation. The series of MATLAB commands used to plot the distribution
might look like

bins = linspace(min(trace), max(trace), 50);
[n, x] = hist(trace, bins);
stairs(x,n);

The single sweep trace in Fig. 3.27 is plotted this way in Fig. 3.29. The
distribution is rather Gaussian-like, as you expect, but you could test to
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FIGURE 3.29 Histogram of the individual voltage values from a single sweep trace. The
line is a Gaussian distribution, with the mean and standard deviation determined from the
trace data, and normalized to the number of measurements.
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see whether this is really the case by comparing it to the Gaussian with
the same mean and standard deviation, and considering the x 2. (See Chap-
ter 10 for definitions and discussions of these quantities.) Some digital
oscilloscopes have the capability of performing a real-time Fourier analy-
sis of the input. That means that you can actually demonstrate that the noise
spectrum d (V%) /dv is indeed “white,” that is, independent of frequency.
This is straightforward data to take, but will require that you learn more
about Fourier analysis to interpret it.

One nontrivial circuit modification would be to make your own band-
width filter. For example, consider the circuit shown in Fig. 3.12.7 Try
assembling components that give you reasonable parameters for the gain
integral in Eq. (3.21). A simpler kind of filter might simply be two RC
filters, one high pass and one low pass, cascaded in series. If you want to
do active buffering, though, be careful to use an opamp that works at these
frequencies. Another interesting variation is to use a few-kiloohm resistor
as input, but something mechanically large and strong enough to take some
real temperature change. If you immerse the resistor in liquid nitrogen, for
example, it should make a large (and predictable) change in the Johnson
noise.

3.7. CHAOS

We now discuss a measurement that uses nonlinear electronic components
to explore phenomena characteristic of complex physical systems.

3.7.1. The Logistic Map and Frequency Bifurcations

We are used to the notion that physical systems are described by differential
equations that can be exactly solved for all times, given an appropriate set
of initial conditions. This is not true in complex systems governed by non-
linear equations. A typical example is the flow of fluids. Atlow velocity one
can identify individual “streamlines” and predict their evolution. However,
when a particular combination of velocity, viscosity, and boundary dimen-
sions is reached, turbulence sets in and eddies and vortices are formed. The
motion becomes chaotic. Many chaotic systems exhibit self-similarity: that

TThis, in fact, is what Johnson used in his 1928 paper. You might want to look it up,
and compare your results to his.



