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PHYSICS 123/253 
Thermal Johnson Noise  
Generated by a Resistor 

 
Complete	
  Pre-­‐Lab	
  before	
  starting	
  this	
  experiment	
    

HISTORY 
 In 1926, experimental physicist John Johnson working in the physics division at 
Bell Labs was researching noise in electronic circuits. He discovered that there was an 
irreducible low level of noise in resistors whose power was proportional to temperature.   
Harry Nyquist, a theorist in that division, got interested in the phenomenon and 
developed an elegant explanation based on fundamental physics.   

THEORY OF THERMAL JOHNSON NOISE 

 Thermal agitation of electrons in a resistor gives rise to random fluctuations in the 
voltage across its terminals, known as Johnson noise. In Problem 1, you are to show that 
in a narrow band of frequencies, fΔ , the contribution to the mean-squared noise voltage 
from this thermal agitation is,  
 
 2( ) 4 Btime

V t Rk T f= Δ  (1) 

 
where R  is the resistance in ohms and T  is the temperature in degrees Kelvin for the 
resistor, Bk  is the Boltzmann constant ( 231 38 10−. ×  J/K).  
 
 This voltage is too small to be detected without amplification. If the resistor is 
connected across the input of a high-gain amplifier whose voltage gain as a function of 
frequency is ( )G f , the mean square of the voltage output of the amplifier will be:  
 
 2 2 2

0
( ) 4 [ ( )] ( )out B Ntime time

V t Rk T G f df V t
∞

= +∫  (2) 

 
where 2( )N time

V t  is the output noise generated by the amplifier itself.  

 
 Thus by measuring 2( )out time

V t  as a function of R  and making a plot, one obtains 

2

0
4 [ ( )]Bk T G f df

∞

∫  from the slope, while the abscissa gives 2( )N time
V t .   But the 

amplifier gain ( )G f  can be independently measured and the gain integral 2

0
[ ( )]G f df

∞

∫  

evaluated. The slope will then give a value for the Boltzmann constant Bk . 
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 This is in outline the first part of the experiment. The second part involves 
measuring the noise voltage as a function of the temperature, to verify the expected 
temperature dependence.  

Problem 1 - Derivation of Eq. (1) 

An electrical transmission line connected at one end to a resistor R  and at the 
other end by an "equivalent" resistor R  may be treated as a one-dimensional example of 
black body radiation.   

 

 
   

Figure 1.  Two resistors (of equal resistance R) coupled via a transmission line. 
At finite temperature T , the resistor R  generates a noise voltage ( )V t  which will 
propagate down the line. If the characteristic impedance of the transmission line is made 
equal toR , the radiation incident on the "equivalent" resistor R  from the first resistor R  
should be completely absorbed.  
 
The permitted standing wave modes in the line have 2L nλ = /  and ( 2 )f c L n= / , where 

1 2 3n = , , ,  etc., and v  is the wave velocity in the line. The separation of the modes in 
frequency is 2v L/  , mode density  σ, and the number of modes between f  and f f+Δ  
is  
 
 ( ) (2 )f f L c fσ Δ = / Δ  (3) 
 
From the Planck distribution or the equipartition theorem, the mean thermal energy 
contained in each electromagnetic mode or photon state in the transmission line is:  
 

 ( )
1B Bhf k T

hfE f k T
e /= ≈

−
     at low frequencies. (4) 
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From Eq. (3) and (4) find the electromagnetic energy ( ) ( )E f f fσ Δ  in a frequency 
interval fΔ . One half of this energy is generated by the first resistor of R  and 
propagating towards the "equivalent" resistor R . Knowing the propagation time from the 
generating resistor to the absorbing resistor t L cΔ = / , show that the absorbed power by 
the "equivalent" resistor R  equals  
 ( ) BP f f k T fΔ = Δ . (5) 

 
In thermal equilibrium, this power is simply the ohmic heating generated by a noise 
voltage source ( )V t  from the first resistor. Since ( )V t  is terminated by the absorbing 
resistor R  and has an "internal" resistance R  (the first resistor), it produces a current 

(2 )I V R= /  in the line. Hence the power absorbed by the "equivalent" resistor R  over 
the frequency interval fΔ  can also be calculated as  
 

 
2 2 2

2 ( )
2 4 4
V V V f fI R R
R R R

Δ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (6) 

 
By equating ( ) BP f f k T fΔ = Δ  to 

2

V f RΔ / , show that 
 
 2 ( ) 4 BV f f k TR fΔ = Δ  (7) 

and  
 2( ) 4 Btime

V t k TR f= Δ  (8) 

 
This is known as Nyquist’s theorem as shown in Eq. (1).  The power spectral density 
(noise power per unit frequency) is independent of frequency. Most other noise sources in 
nature have a f -1 to f -2 spectrum.  
       Question:  what is the integrated power of this Johnson noise over all frequencies?  
[i.e., why can’t a single resistor supply the world’s energy needs?] 
 
 Eq. (1) is interesting: the left hand side describes random fluctuations of a lossy 
system in thermodynamic equilibrium.  i.e. it is an equilibrium property; both the 
electrons and the lattice are in equilibrium at some temperature T.  However, the right 
hand side of the equation refers explicitly to a non-equilibrium property of the same lossy 
system: the resistance R, which is measured by applying a voltage (taking the system out 
of equilibrium) and measuring the current of electrons scattering through the lossy 
system.  
 
Johnson noise is an example of a broader fundamental principle in nature called the 
“fluctuation-dissipation theorem.”  It relates the non-equilibrium dissipation in a 
system to its spontaneous fluctuations in equilibrium.  See accompanying papers by 
Callen. 
 
RESISTOR	
  AND	
  APPARATUS	
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 You	
   have	
   several	
   resistors	
   for	
   your	
   source	
   of	
   noise:	
   a	
   box	
  with	
  many	
   resistors	
   at	
   room	
  
temperature	
  (switch	
  selected).	
  	
  [For	
  those	
  doing	
  this	
  as	
  their	
  main	
  experiment,	
  you	
  also	
  have	
  a	
  
resistor	
  connected	
  at	
  the	
  end	
  of	
  parallel	
  wire	
  leads	
  in	
  a	
  tube.	
  The	
  resistor	
  is	
  thermally	
  connected	
  
to	
  the	
  bottom	
  of	
  the	
  tube	
  with	
  some	
  glue.	
  	
  The	
  wire	
  leads	
  are	
  thin	
  so	
  they	
  don’t	
  conduct	
  much	
  
heat;	
  this	
  is	
  so	
  that	
  the	
  resistor	
  at	
  the	
  end	
  of	
  the	
  tube	
  will	
  cool	
  to	
  the	
  temperature	
  of	
  the	
  bottom	
  
plate	
  when	
  cooled.]	
  	
  
	
  
A	
  very	
  low	
  noise	
  operational	
  amplifier	
  is	
  used	
  as	
  the	
  first	
  stage	
  of	
  amplification	
  for	
  the	
  Johnson	
  
noise.	
  This	
  preamp	
  has	
  a	
  built-­‐in	
  band	
  pass	
   filter:	
  ~200	
  Hz	
   to	
  1800	
  Hz.	
  Beware:	
   the	
   filter	
  built	
  
into	
   the	
   amplifier	
   is	
   only	
   one	
   component	
   in	
   the	
   effective	
   gain	
   vs	
   frequency	
   behavior	
   for	
   this	
  
system:	
   the	
  small	
  “parasitic”	
  capacitance	
   in	
  parallel	
  with	
   the	
  resistor	
   is	
  a	
   filter	
   in	
   its	
  own	
  right	
  
(you	
  must	
   account	
   for	
   this	
   if	
   you	
   use	
   resistances	
   near	
   a	
  megohm).	
   	
   The	
   resulting	
   “filter”	
   is	
   a	
  
product	
   of	
   the	
   RC	
   filter	
   on	
   the	
   input	
   (small	
   high	
   frequency	
   roll-­‐off)	
   and	
   the	
   rather	
   square	
  
bandpass	
  filter	
  in	
  the	
  amplifier	
  box.	
  The	
  apparatus	
  is	
  connected	
  with	
  shielded	
  coaxial	
  cables	
  as	
  
shown	
   to	
   reduce	
   pickup.	
   Beware:	
   there	
   is	
   a	
   special	
   easily	
   damaged	
   3-­‐wire	
   connector	
   on	
   the	
  
amplifier	
  input	
  that	
  looks	
  like	
  a	
  BNC,	
  but	
  it	
  is	
  not.	
  Do	
  not	
  twist	
  this	
  input	
  connector.	
  
	
  
	
   The	
  sine	
  wave	
  oscillator	
   is	
  used	
   to	
  measure	
   the	
  gain	
  vs	
   frequency	
  of	
   the	
  amplifier.	
   	
  The	
  
oscillator	
   output	
   is	
   put	
   through	
   an	
   attenuator	
   to	
   reduce	
   it	
   to	
   the	
   level	
   needed	
   to	
   be	
   able	
   to	
  
insert	
  into	
  the	
  amplifier.	
  	
  The	
  attenuation	
  factor	
  is	
  accurately	
  given	
  by	
  the	
  controls	
  and	
  does	
  not	
  
need	
  to	
  be	
  calibrated.	
  	
  Check	
  its	
  output	
  voltage	
  before	
  directly	
  connecting	
  to	
  the	
  amplifier	
  input.	
  	
  
The	
   frequency	
   f	
   of	
   the	
   oscillator	
   can	
   be	
   accurately	
   set	
   and	
   determined	
   with	
   the	
   Integrating	
  
Digital	
  Voltmeter.	
  	
  Finally,	
  you	
  have	
  a	
  spectrum	
  analyzer.	
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In addition to the resistors (box and cold probe) and the low noise bandpass amplifier 
shown above, you have all the equipment you need (and more!) to design your 
experiment and make the necessary measurements, including calibration.  Shown above 
(left to right): 
 
HP 5315 Frequency counter 
Agilent 34401A  Digital precision volt meter (AC or DC) 
HP 204D Oscillator 
HP350D  Attenuator 
Power supply for the low noise band pass amplifier 
Tektronix 2205 Oscilloscope 
Computer with software for PicoScope and data analysis software 
 
PicoScope 4262  Digital scope and spectrum analyzer (off photo to right) 
See http://www.picotech.com/applications/resolution.html 
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We recommend that you first begin this measurement by making an approximation for 
the integral of the gain squared over frequency.   Look at the spectrum on the PicoScope 
[instructions below] and make an approximation for an equivalent square bandpass.  See 
also the linear plot of the gain shown below. Use that fΔ as the equivalent bandpass in 

the equation for Johnson noise.   To get the gain of the amplifier, inject a small amplitude 
sine wave as a calibrator as described in the next section and measure the output.  Use the 
RMS AC voltmeter in all these measurements.   With some care you should be able to get 
the Boltzmann constant to better than 20% accuracy in this way.   A more accurate 
measurement involves integrating over the squared gain [since you are measuring 
squared voltage, or power] as described in the next section. 
 
 
 
 
PROCEDURE FOR MEASURING THE GAIN INTEGRAL     [G(f)]2

0

∞

∫ df 

 
 You obtain   [G(f)]2

0

∞

∫ df by measuring the amplifier gain   G(f) at a discrete 

and evenly spaced set of frequency values (f) and then evaluating the discrete 

sum   [G(f)]2∑ Δf numerically.  You measure the gain G by injecting a known 

voltage to the amplifier and then measuring its output voltage.  But: the 
amplifier takes only VERY small input voltages!!   Keep input under 250 
microV. 

 
 To measure   G(f), connect a precision broadband voltage attenuator to the 
input of the amplifier.  The attenuator is used to assist you in determining the 
amplifier gain   G(f) as follows.   
 
 Supply the input of the attenuator with a sinusoidal voltage signal of Vi = 1 
volt at some frequency between zero and 3000 Hz.  For the best accuracy, 
measure the applied voltage signal with a digital rms voltmeter.  Since at f = 1000 
Hz,   G(f) is roughly 10000, you can set the attenuation parameter   NdB ~ 80 dB  
that gives a voltage attenuation factor of   GA = 10NdB 20 ~ 10000).  The output of the 
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attenuator,   Vi GA , is then fed into the input of the amplifier.  You measure the 
amplifier output   Vo = Vi GA( )G f( ) with the same rms voltmeter.  The amplifier 
gain is given by  
 
   G f( )= Vo Vi( )GA = Vo Vi( )10NdB 20 (9) 
 
It is best that you adjust   NdB so that   Vo Vi ~ 1.  Repeat the measurement at a 
series of frequencies, to obtain a discrete set of   G(f) values.  From these results, 
you can numerically calculate   [G(f)]2

0

∞

∫ df. 
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JOHNSON NOISE FROM RESISTORS AT ROOM TEMPERATURE: 
 
 Disconnect the attenuator from the amplifier.  Connect the resistor box to 
the amplifier and select a R value using the switch on the box.  Measure the rms 
voltage of the amplified Johnson noise signal.  Since the rms voltage fluctuates on 
the time scale of a fraction of second, it is difficult to obtain an accurate reading 
of the mean of the rms voltage.  To obtain the latter, you need to integrate over 
time (see Agilent 34401A manual) 
 
 Measure the noise voltage of each of the resistors. Since you measure the 
average RMS voltage out of the amplifier, you must divide this by the gain of the 
amplifier so you are then measuring the RMS voltage “referred to the amplifier 
input”! The value of the resistance of each of the resistors is written on the 
amplifier box.   If you wish to check the resistance of these resistors, you may by 
connecting an ohm meter to the resistor box connector and measuring the 
selected R. 
 
 Avoid using the two highest resistances. This is because there is stray 
capacitance in the cable and connector (as well as the preamp input), forming a 
low-pass filter. 
 
 Plot the square of the RMS noise voltage (referred to the amplifier input) vs 
the resistance R.   Note that is does not intercept the origin.   Why is this?   
Consider all sources of noise on the input! 
 
 Use Eq. (8) to calculate the Boltzmann constant   k B, taking into account the 
corrections mentioned below.  Also, you should compare the value of the 
amplifier noise,   VN

2
time

, obtained from your data of the noise voltage measured 

at the amplifier output when the input is shorted. 
 
 
PICO-SCOPE SPECTRUM ANALYZER 
For your experiment, you need to create your own folder to store the data files.  
 
(1) Measure thermal Johnson noise power spectra or   V

2 f( )Δf  using  
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 The PicoScope and verify that thermal Johnson noise is indeed 
frequency-independent 

 Question: How does the noise power spectrum   V
2 f( )Δf  compare to  

    the square of the amplifier gain   G
2 f( ) that you measured ? 

    Did you account for the RC filter on the input? 
 
(2) Determine the resistance dependence of the noise  
 spectra and in turn calculate the Boltzmann constant kB 
 Question: How does the noise power spectrum   V

2 f( )Δf  (shape and   
    magnitude) vary with the resistance R ? 
 
 Question: Can you think of a way to use the noise power spectrum 
    and the measured gain curve   G

2 f( ) to calculate the  
    Boltzmann constant kB without the AC Voltmeter and  
    the Integrating Voltmeter ? 
 
(3) Use Johnson noise spectra to determine the frequency response of the entire 

system.   Hint: this is a good way of measuring the combined filters of the input 
RC and the amplifier gain curve. 

 
 
 
 

 
 

PicoScope spectrum of the Johnson noise in the integrating mode. 
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The PicoScope software has some “features” if you measure wideband noise.  As shown 
below you should use either 200mV or 500mV [not Auto] for your mode, and y scale dB.  
 

 

 

Notes 
There are three units built specifically for this experiment. The first box is combination 
amplifier and filter. A very low noise operational amplifier is used as the first stage of 
amplification for the Johnson noise. Three total amplification stages are used for a total 
voltage gain of about 10,000. Active filters are included with the amplifier to cut out the 
low and high frequencies, leaving a pass band covering approximately 100 Hz to 1.8 Khz. 
The spectrum below shows the filter passband.  10 log of the noise power is plotted vs 
frequency in KHz.The filter bandpass is not exactly rectangular, but you can correct for 
that.  This plot shows the total noise spectrum output: a product of the amplifier gain 
curve and the input RC spectral roll-off due to the small parasitic capacitance. 
 
There is a resistor box that attaches to the amplifier input to allow testing for Johnson 
noise on several different values of resistors and a probe with a ~1 Megohm resistor 
(measure it!) that is used for testing of temperature effects on Johnson noise. When 
testing resistors for Johnson noise, the signal generator, frequency counter and 
attenuator are not used of course. When checking for amplifier/filter characteristics, the 
Generator, counter and attenuator are connected in place of the resistor box or probe. 
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Measuring the Gain Integral [Optional for PHY 153/253 noise lab] 
 
Before taking precision data for Johnson noise, the characteristics of the Amplifier and 
Filter must be accurately determined. The setup for this is shown in the photo below.  
 

 
 
You can obtain the curve, or waveform, of the Amp/Filter by applying an input sine wave 
of known frequency and amplitude and then measuring the output voltage. Measuring the 
output at many frequencies across the band of interest and plotting the results on a 
frequency vs amplitude graph will provide results such as those on the next page. Note 
that this is just the filter in the amplifier box; you must also consider the filter caused by 
the input capacitance in parallel with the resistor (see above total noise spectrum plot.) 
 



V2   Oct 2013   T. Tyson 12 

 
 
If the filter response plot above simply had precisely vertical sides and a flat top, then the 
Johnson noise over the bandwidth would be the power spectral density times the 
bandwidth. Any filter response may be represented by an effective bandwidth which is 
the width (in Hz) of a rectangle fit to the response curve which has the same  total area as 
the filter response curve.  
 
What about internal noise generated in your amplifier? The full bandwidth internal noise 
can be measured by connecting a short circuit adapter (shunt) across the amplifier input 
and measuring the output voltage.  Be sure to correct for this. 
 
The amplifier filter response does not look like a nice rectangular box. 
The effective bandwidth in the Johnson noise formula is simply the width Δfeff  of a 
rectangular passband which has total area    [G(f)]2

0

∞

∫ df. 

i.e. 2 2
00

[ ( )] / [ ( )]efff G f df G f
∞

Δ = ∫   where f0  is taken at the center of the passband. 

 
 
 

Filter Spectrum
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The attenuator as well as the Picoscope use "dB power" (20 dB = factor of 100 in 
power, i.e. a factor of 10 in voltage). But do not trust their calibration. You must 
calibrate them yourself. The most accurate voltage standard you have is the 
Agilent digital rms voltmeter. Use it to calibrate the attenuator in the range you use 
it. When you do this, be sure to measure the input voltage to the attenuator while 
the oscillator is hooked into it (the oscillator's output voltage is loaded down by the 
attenuator's input resistance), and then measure the output voltage from the 
attenuator in the attenuation range you will use it. You will have to adjust the 
oscillator output voltage to stay at the same input voltage to the attenuator for 
different attenuation settings. You can also use the Agilent digital voltmeter to 
calibrate the picoscope dB power scale on its FFT spectrum. 
 
Most importantly, use the Agilent to make all voltage measurements directly, 
including rms noise voltage from the low noise bandpass amplifier.  Use the 
Picoscope to visualize the spectrum and to make appropriate corrections to the 
rms voltage measured by the Agilent. You will find that you need to do this 
correction only in two cases: very high resistance (because of the change in gain 
profile which you see on the Picoscope spectrum), and at liquid nitrogen 
temperature (because of microphonic extra power in acoustic resonances which 
show nicely on your Picoscope spectrum). 
 
You should plot mean square voltage vs resistance at constant temperature, and 
mean square voltage vs temperature at constant resistance. You need this to 
derive Boltzmann's constant. 
 
 
 
TEMPERATURE DEPENDENCE OF THE JOHNSON NOISE 
[undertake this only if you are doing this plus 1/f and shot noise 
as part of your main PHY 123/253 project] 
 
 A resistor in a glass thermal probe tube is provided to explore the 
temperature dependence of Johnson noise.   Make sure that the interior of the 
tube is filled with helium or nitrogen gas to prevent condensation.  Connect this 
probe directly to the INPUT connector on the amplifier (additional cable will 
only add capacitance and microphonic noise).  In fact, calculate what a little 
capacitance like 10pF might do to the shape of your noise spectrum!  You may 
want to consider this in your data analysis. 
 
 Record the RMS voltage produced by this resistor at room temperature     (~ 
300 K as measured with thermometer), and at liquid nitrogen (77 K) and liquid 
helium (4.2 K).  Also, use dry-ice for another temperature point. For low 
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temperature measurements, make sure that the probe is filled with helium gas 
before it is immersed in the containers of liquid nitrogen and liquid helium.  The 
helium gas will not become liquefied, and will help cool the resistor to the final 
temperature by conducting the heat away from it. 
 
 Plot the rms noise voltage as a function of the temperature.  Also, measure 
the resistance of the resistor at each of the temperatures (since the resistance of 
most resistors is a strong function of the temperature!). 
 
 If you find any discrepancy between the measurement and the theory, 
suggest what their source(s) might be. 
 
 

Measurements of noise are very important to physics experiments, 
because the actual noise levels in the experiment can determine whether one can 
measure small signal levels in the experiment.  Measurements of noise power 
spectra as described here are frequently performed to understand the sources of 
the noise in the experiment.  If you understand the noise in your experiment, you 
can then work to reduce noise sources by, for example, choosing components 
with less noise, averaging longer to reduce the effects of noise on the signal, or 
working in frequency regions where the noise is lower.  In fact, specialized 
frequency analyzers exist; these are instruments which can easily measure such 
noise spectra (see below for an example: the PicoScope.)  Some modern digital 
sampling oscilloscopes have a useful FFT option, and can be used to explore a 
wide frequency spectrum.  Not only are there other sources of noise, there are 
also other sources of interference which may introduce systematic errors.  For 
example, the local FM station has a particularly strong signal in the lab (you 
should look for this and be sure it is not present at the low-level parts of your 
circuit by probing with a scope or spectrum analyzer.  Even if your scope does 
not have a FFT option you can change the time base and sensitivity to see this 
sine wave if it is present.) 
 
 This noise power spectrum measurement by a computer and fast Fourier 
Transform (PicoScope) is particularly useful for measuring the noise of the 
resistor in the separate probe as a function of temperature (room temperature 
(~300K), in crushed dry ice (195K), and in liquid nitrogen (77K).  The noise from 
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this resistor is particularly susceptible to microphonic noise.  Microphonic noise 
is the noise voltage generated in electric wires due to their motion through 
capacitive effect or piezo-electric effect.  Thus it can be generated from the probe 
being shaken, by people walking in the room causing vibrations in the probe, etc.  
Measuring the noise power spectrum allows you to distinguish the Johnson noise 
(which is not frequency dependent) from microphonic noise, as well as electrical 
pickup from the AC power line frequency (60Hz) and noise from plasma 
discharges (lights!) that peak at specific frequencies such as multiples of 60Hz. 
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